
https://www.halvorsen.blog	 	

Available	Online:	https://www.halvorsen.blog/documents/technology/iia	 	

	

	

	

	

	

	

	

	

Industrial	IT	and	Automation	
A	Practical	Approach!	

Hans-Petter	Halvorsen	

	

	

Industrial	IT	and	Automation	
A	Practical	Approach!	

	

Hans-Petter	Halvorsen	

Copyright	©	2017	

	

ISBN:	978-82-691106-1-6	

	

Publisher Identifier: 978-82-691106	

https://halvorsen.blog	

	

iii	

Preface	
This	document	discusses	different	topics	within	Industrial	IT	and	Automation	with	focus	on	
practical	examples.	The	different	topics	will	introduce	relevant	software	and	different	examples	
how	to	implement	it	in	different	programming	languages	like	LabVIEW,	Visual	Studio/C#	and	
MATLAB.	

Industrial	IT	is	the	integration	of	Automation	and	Information	Systems	across	the	business.	You	
could	say	Industrial	IT	is	use	of	IT	in	industrial	applications,	everything	from	Process	Control	
Systems,	Sensor	Technology,	Data	Acquiring,	Data	Logging	and	Monitoring	and	Software	and	
Systems	Engineering.	 	

You	need	to	have	knowledge	of	Data	Acquisition,	Database	Systems,	Data	Communication	and	
Networks,	Automation	and	Control,	etc.	 	

Terms	such	as	Internet	of	Things	(IoT),	Smart	Technology,	Cloud	Computing	and	Industry	4.0	are	
very	popular	these	days.	These	topics	and	many	others	will	be	discussed	in	this	document.	

The	figure	below	shows	some	important	steps	in	the	Industrial	IT	and	Automation	evolution:	

	

The	Industrial	IT	and	Automation	Evolution	

This	document	discusses	the	following	topics	regarding	Industrial	IT	and	Automation	(see	figure	
below):	

	

iv	

	

Word	Cloud	of	some	important	Topics	discussed	in	this	document	

	

This	document	discusses	different	topics	within	Industrial	It	and	Automation	with	focus	on	
practical	examples.	

The	different	topics	will	introduce	relevant	software	and	different	examples	how	to	implement	it	
in	different	programming	languages	like	LabVIEW,	Visual	Studio/C#	and	MATLAB.	

Short	overview	of	the	contents:	

• Part	1:	System	Engineering:	Project	Management,	System	Engineering,	Software	
Development	and	Documentation.	You	need	these	tools	in	order	to	create	professional	
Industrial	IT	and	Automation	Solutions.	

• Part	2:	Industrial	IT:	Data	Communication,	Database	Systems,	Web	Services,	Modbus,	
Virtualization,	Wireless	Systems.	

• Part	3:	Automation:	DAQ,	HMI,	Control	Systems,	Sensors	and	Actuators,	OPC,	SCADA	
Systems,	HIL	Simulation.	

• Part	4:	Internet	of	Things:	What	is	Internet	of	Things	(IoT),	Home	Automation,	Arduino,	
Raspberry	Pi.	

• Part	5:	Applications	and	Examples:	Here	you	find	different	applications	and	examples	
within	different	areas.	

In	addition	to	this	document,	you	find	lots	of	online	resources,	in-depth	tutorials,	PowerPoints	
videos,	example	codes,	etc.	on	this	web	site:	

https://www.halvorsen.blog	 	

	

v	

	

Information	about	the	Author:	

The	author	currently	works	at	University	College	of	Southeast	Norway.	The	author	has	been	
working	with	Industrial	IT	and	Automation	Engineering	for	the	last	20	years.	

	

Hans-Petter	Halvorsen	

	

For	more	information,	visit	my	web	site:	

	

https://www.halvorsen.blog	 	

	

Available	Online:	https://www.halvorsen.blog/documents/technology/iia	 	

Table	of	Contents	
Preface	...	iii	

Table	of	Contents	..	vii	

Part	1	System	Engineering	...	15	

1	 Project	Management	..	16	

1.1	 Project	Planning	...	17	

1.2	 Kick-off/Brainstorming	...	17	

1.3	 Software	Development	Plan	(SDP)	...	18	

1.3.1	 Gantt	Chart	...	18	

1.4	 Meetings	..	20	

1.4.1	 Notice	of	Meeting	and	Meeting	Agenda	...	21	

1.4.2	 Minutes	of	Meeting	..	21	

2	 System	Engineering	...	22	

3	 Requirements	Engineering	..	25	

3.1	 UML	..	26	

3.1.1	 UML	Software	...	27	

3.2	 Use	Case	...	28	

3.3	 Sequence	Diagram	...	29	

3.4	 Class	Diagram	...	30	

3.5	 Database	Design	...	30	

4	 Visual	Studio	Team	Services	..	33	

5	 Software	Architecture	...	37	

5.1	 Client-Server	Architecture	..	37	

viii	 	 Table	of	Contents	

5.2	 3-Tier	Architecture	...	38	

5.2.1	 3-Tier	Architecture	with	Visual	Studio	..	42	

5.3	 API	..	43	

6	 Implementation	..	46	

6.1	 LabVIEW	...	46	

6.2	 Visual	Studio	and	C#	...	47	

6.3	 MATLAB	..	48	

7	 Testing	...	50	

7.1	 Levels	of	Testing	...	52	

7.1.1	 Unit	Testing	...	53	

7.1.2	 Regression	Testing	..	56	

7.1.3	 Integration	Testing	..	57	

7.1.4	 System	Testing/Validation	Testing	..	57	

7.1.5	 Acceptance	Testing	...	57	

7.2	 Test	Categories	...	58	

7.2.1	 Black-box	Testing	..	58	

7.2.2	 White-box	Testing	...	58	

8	 Documentation	...	60	

8.1	 Process	Documentation	...	63	

8.2	 Product	Documentation	...	64	

8.2.1	 System	Documentation	..	64	

8.2.2	 User	Documentation	...	66	

Part	2	:	Industrial	IT	..	69	

9	 Data	Communication	..	70	

9.1	 Network	...	71	

10	 Database	Systems	..	72	

ix	 	 Table	of	Contents	

10.1	 Structured	Query	Language	(SQL)	..	73	

10.2	 SQL	Server	..	75	

10.3	 ODBC	..	76	

10.4	 Database	Communication	in	LabVIEW	...	77	

10.4.1	 LabVIEW	SQL	Toolkit	...	77	

10.4.2	 LabVIEW	Example	...	78	

10.5	 Database	Communication	in	C#	...	79	

10.5.1	 C#	Example	...	79	

11	 Web	Services	..	81	

11.1	 Web	Services	with	LabVIEW	...	83	

11.2	 Data	Dashboard	for	LabVIEW	...	89	

12	 Modbus	..	92	

12.1	 What	is	Modbus?	..	92	

12.2	 Modbus	Register	Types	..	93	

12.2.1	 Access	Levels	...	94	

12.3	 Modbus	Protocols	..	94	

12.3.1	 Modbus	ASCII	..	95	

12.3.2	 Modbus	RTU	...	95	

12.3.3	 Modbus	TCP/IP	...	95	

12.4	 Modbus	in	LabVIEW	...	95	

12.4.1	 LabVIEW	Modbus	API	...	96	

12.4.2	 LabVIEW	Modbus	Simulator	...	99	

13	 Virtualization	..	100	

13.1	 Introduction	..	100	

13.2	 VMware	..	101	

13.2.1	 VMware	Workstation	Player	...	101	

x	 	 Table	of	Contents	

13.2.2	 VMware	Workstation	...	102	

13.2.3	 VMware	vSphere	..	102	

13.3	 Microsoft	Hyper-V	..	102	

13.3.1	 Windows	Server	with	Hyper-V	..	103	

13.3.2	 Hyper-V	Server	..	103	

13.3.3	 Windows	Client	Hyper-V	...	103	

13.4	 VirtualBox	...	105	

13.5	 Mac	and	OS	X	..	105	

13.5.1	 BootCamp	...	105	

13.5.2	 VMware	Fusion	...	106	

13.5.3	 Parallels	Desktop	..	106	

13.5.4	 VirtualBox	...	106	

14	 Cloud	Computing	...	108	

14.1	 Windows	Azure	..	109	

14.2	 Amazon	Web	Services	..	109	

14.3	 Google	Cloud	Platform	...	110	

15	 Wireless	Systems	...	111	

15.1	 ZigBee	...	112	

15.2	 WirelessHART	...	112	

16	 Vision	Systems	...	113	

16.1	 Vision	Systems	in	LabVIEW	...	113	

16.2	 Vision	Systems	in	Visual	Studio/C#	...	114	

Part	3	:	Automation	..	115	

17	 DAQ	Systems	..	116	

17.1	 Sampling	...	117	

17.1.1	 AD	Converters	...	118	

xi	 	 Table	of	Contents	

17.2	 DAQ	Hardware	..	119	

17.2.1	 NI	USB	TC-01	Thermocouple	Device	...	119	

17.2.2	 NI	USB-6008	DAQ	Device	..	120	

17.3	 NI	DAQmx	driver	...	121	

17.3.1	 NI	MAX	..	123	

17.4	 Measurement	Studio	..	123	

17.5	 DAQ	with	LabVIEW	...	124	

17.5.1	 Write	to	DAQ	..	126	

17.6	 Datalogging	...	127	

17.6.1	 Measurement	Filter/Low-pass	Filter	..	129	

17.6.2	 LabVIEW	Example	...	130	

17.6.3	 C#	Example	...	133	

17.7	 Industrial	DAQ	Systems	..	134	

17.7.1	 cDAQ	...	134	

17.7.2	 cRIO	...	134	

18	 User	Experience	...	136	

19	 Control	Systems	...	137	

19.1	 PC-based	Control	System	...	137	

19.2	 PID	Control	...	138	

19.2.1	 PI	Controller	as	a	State-space	model	..	140	

19.3	 Industrial	Control	Systems	..	141	

20	 Sensors	and	Actuators	...	143	

20.1	 Sensors	...	143	

20.1.1	 Pt-100	...	145	

21	 OPC	..	150	

21.1	 What	is	OPC?	..	150	

xii	 	 Table	of	Contents	

21.1.1	 OPC	Specifications	..	151	

21.2	 MatrikonOPC	Simulation	Server	...	152	

21.2.1	 MatrikonOPC	Explorer	(OPC	Client)	..	152	

21.3	 OPC	DA	in	LabVIEW	..	153	

21.3.1	 Write	to	OPC	Server	using	LabVIEW	...	154	

21.3.2	 Read	from	OPC	Server	using	LabVIEW	..	155	

21.4	 OPC	DA	in	Visual	Studio/C#	..	155	

21.4.1	 Read	OPC	Data	..	156	

21.4.2	 Write	OPC	Data	...	158	

21.4.3	 Using	a	Timer	..	160	

21.5	 OPC	DA	in	MATLAB	...	161	

21.6	 OPC	UA	...	161	

21.6.1	 OPC	UA	in	LabVIEW	..	163	

21.6.2	 OPC	UA	in	MATLAB	...	165	

22	 SCADA	Systems	..	166	

22.1	 Introduction	..	166	

23	 HIL	Simulation	..	168	

23.1	 What	is	HIL	Simulation?	..	168	

23.2	 Why	use	HIL	simulation?	..	169	

23.3	 Challenges	..	171	

23.4	 Applications	..	171	

23.4.1	 Embedded	Control	Systems	..	171	

23.5	 Procedure	...	172	

23.6	 Practical	Example	...	172	

23.6.1	 Introduction	..	172	

23.6.2	 Simulated	Process	...	173	

xiii	 	 Table	of	Contents	

23.6.3	 Hardware	..	174	

23.6.4	 The	Procedure	...	174	

23.6.5	 HIL	Simulation	in	LabVIEW	..	176	

Part	4	:	 	 Internet	of	Things	...	178	

24	 Internet	of	Things	(IoT)	..	179	

24.1	 Data	Logging	...	181	

24.1.1	 Web-based	Logging	Services	...	181	

25	 Home	Automation	...	183	

25.1	 Home	Automation	Platform	...	185	

26	 Arduino	..	188	

26.1	 Arduino	UNO	..	188	

26.2	 Sensors	and	Actuactors	..	189	

26.3	 Software	...	190	

26.4	 Code	Examples	...	192	

26.4.1	 TMP36	Temperature	Sensor	Example	..	193	

26.4.2	 NTC	Thermistor	Example	..	196	

26.5	 Arduino	Shields	...	199	

26.6	 XBee	..	200	

26.7	 XBee	Hardware	...	201	

26.8	 Fritzing	..	203	

27	 Raspberry	Pi	...	204	

27.1	 Accessories	...	207	

27.2	 Communication	Protocols	..	207	

27.3	 Windows	10	IoT	Core	...	207	

28	 Industry	4.0	..	208	

Part	5	:	Applications	and	Examples	..	214	

xiv	 	 Table	of	Contents	

29	 Weather	Station	...	215	

29.1	 Database	...	217	

29.2	 OPC	Server	..	218	

29.3	 Web	Service	..	218	

29.4	 iPad	App	...	219	

29.5	 Windows	10	Universal	App	..	220	

30	 DeltaV	Training	and	Research	Center	..	221	

30.1	 Training	Center	...	222	

30.2	 Research	Center	...	223	

31	 Data	Management	and	Monitoring	Platform	..	225	

References	..	228	

	

Available	Online:	https://www.halvorsen.blog/documents/technology/iia	 	

	

Part	1 System	Engineering	
In	this	part,	we	start	with	an	introduction	to	Project	Management	and	System	Engineering.	Since	
this	document	focus	on	practical	implementations,	it	is	crucial	that	proper	project	management	is	
followed	and	that	you	use	a	system	engineering	approach	when	you	develop	your	solutions.	

Web:	https://www.halvorsen.blog/documents/programming/software_engineering/	 	

	

	

	

	

	

16	

1 	 Project	Management	
Since	this	document	focus	on	practical	implementations,	it	is	crucial	that	proper	project	
management	is	followed	and	that	you	use	a	system	engineering	approach	when	you	develop	your	
solutions.	

Project	management	is	the	key	factor	in	any	software	development	projects.	Project	management	
is	the	discipline	of	planning,	organizing,	motivating,	and	controlling	resources	to	achieve	specific	
goals	(Halvorsen,	Hans-Petter	(2017).	Software	Development	-	A	Practical	Approach!).	

In	Figure	1-1	we	see	the	well-known	project	triangle.	

	

Figure	1-1:	Project	Triangle	

Here	are	some	Key	factors	to	success:	

• 	 Kick-off	and	Brainstorming	
• 	 Planning	and	Estimation	
• 	 Project	Tracking	
• 	 Communication	and	Collaboration	
• 	 Meetings	
• 	 Using	proper	Tools,	such	as	e.g.,	Visual	Studio	Online	

	

17	 	 1	Project	Management	

	

1.1 Project	Planning	
Software	development	involves	lots	of	activities	that	need	to	be	planned	and	synchronized.	In	
order	to	do	that	we	need	good	tools	for	these	activities.	The	Gantt	chart	is	probably	the	most	used	
tool.	In	addition,	we	need	to	have	different	meetings	in	order	to	plan	and	coordinate	the	different	
activities.	

1.2 Kick-off/Brainstorming	
A	Project	should	always	start	with	a	Kick-off	meeting	where	a	brainstorming	session	is	important	
of	that	meeting.	

During	the	brainstorming,	you	should:	

• Involve	all	in	the	group	

• Discuss	what	you	are	going	to	do	in	the	project	

• How	are	you	going	to	solve	the	project?	

• etc.	

	

http://geek-and-poke.com	 	

In	addition	to	get	good	ideas	for	solving	the	project,	you	should	learn	from	previous	projects.	

18	 	 1	Project	Management	

	

Examples:	Who	are	going	to	solve	the	different	parts,	what	kind	of	Frameworks	are	you	going	to	
use,	what	kind	of	development	tools	shall	you	use,	etc.	

1.3 Software	Development	Plan	(SDP)	
A	good	idea	is	to	create	a	Software	Development	Plan.	The	Software	Development	Plan	gives	an	
overview	of	all	the	communication	within	the	project	or	within	the	team,	i.e.,	what	kind	of	
communication,	how	the	communication	should	be	done,	etc.	

Examples	of	Communication:	

• Meetings:	The	Team	will	meet	every	Monday	from	…	
• Standards:	Which	Word	processor,	Templates,	etc.	
• E-mail…	or	other	communication	platforms,	…	
• Collaboration:	How	will	you	communicate?	Work	together	on	Tuesdays,	…	
• Other	Tools:	Microsoft	Project,	…	
• etc.	

The	Software	Development	Plan	typically	includes	the	following	sections:	

1. Introduction:	This	briefly	describes	the	objectives	of	the	project	and	set	out	the	constraints	
(e.g.,	budget,	time,	etc.)	that	affects	the	management	of	the	project	

2. Project	Organization:	This	section	describes	how	the	development	team	is	organized,	the	
people	involved	and	their	roles	in	the	team.	

3. Risk	Analysis	

4. Hardware	and	Software	Resource	Requirements	

5. Work	Breakdown	(WBS,	Work	Breakdown	Structure):	Break	down	the	project	in	into	
activities	and	identifies	milestones	

6. Project	Schedule:	Shows	dependencies	between	activities,	the	estimated	time	required	to	
reach	each	milestone,	allocation	of	people	to	activities.	(5)	and	(6)	is	typically	done	in	a	
Gantt	Chart	(created	in	e.g.	Microsoft	Project)	

7. Monitoring	and	Reporting	Mechanisms:	Definition	of	the	Management	Report	that	should	
be	produced,	when	these	should	be	produced,	etc.	

Other	words	for	the	Software	Development	Plan	may	be	“Communication	Plan”	or	“Project	Plan”.	

1.3.1 Gantt	Chart	

19	 	 1	Project	Management	

	

One	of	the	most	used	tool	for	project	planning	is	the	Gantt	chart.	The	Gantt	chart	gives	an	
overview	of	tasks,	subtasks,	milestones,	resources,	etc.	in	a	project.	

In	Figure	1-2	we	se	a	Gant	Chart	example	created	with	Microsoft	Project.	

	

Figure	1-2:	Gant	Chart	Example	–	Microsoft	Project	

It	is	important	that	the	Project	Management	is	an	active	part	of	your	software	project.	The	Gantt	
Chart	should	be	used	through	the	whole	project,	it	is	not	something	you	create	in	the	beginning	of	
the	project	and	put	in	a	drawer.	

In	Figure	1-3	we	see	the	recommended	way	of	working	with	the	different	project	activities.	

20	 	 1	Project	Management	

	

	

Figure	1-3:	Project	Work	

1.4 Meetings	
It	is	necessary	to	have	meetings	when	planning	and	creating	software,	but	these	meetings	should	
not	be	misused.	 	

Below	we	list	some	typical	meeting	needed	during	the	software	development	project:	

• Kickoff	and	Planning	Meetings	
• Project	Meetings	
• Daily	Scrum	Meetings	
• Review	Meetings	
• Meetings	for	Planning	next	Sprint/Iteration	
• etc.	

For	meetings	in	general	we	have	the	following	guidelines:	

• The	meeting	agenda	should	be	clear.	
• All	meetings	should	follow	the	basic	structure	that	is	described	for	that	meeting.	
• Meetings	should	start	on	time,	even	if	some	team	members	are	late.	
• Meetings	should	finish	on	time.	
• Each	team	member	should	come	to	the	meeting	prepared.	

21	 	 1	Project	Management	

	

1.4.1 Notice	of	Meeting	and	Meeting	Agenda	

A	typical	meeting	agenda	could	be	as	follows:	

• Project	Plan,	Gantt	Chart	(Project	Manager)	

• Work	Items,	Overview	and	Status	(Test	Manager)	 	

• Demonstration	of	Applications/Coding	(Individual)	

• Short	Status	for	each	member	(Individual)	 	

o What	have	you	done	so	far?	

o What	shall	be	your	main	focus	the	next	weeks?	

o Any	Technical	Challenges/Problems/Issues?	(It	is	very	important	to	get	an	overview	
of	the	challenges	in	the	project,	or	else	the	whole	project	will	be	at	risk	if	you	don’t	
tell	about	them!)	 	

o Other	matters	

• The	meeting	should	last	no	longer	than	60	minutes.	

When	you	are	finished	with	the	meeting,	write	a	short	Minutes	of	Meeting	as	soon	as	possible.	

1.4.2 Minutes	of	Meeting	

Write	a	“Minutes	of	Meeting”	(send	on	e-mail	to	team	members	and	supervisor	the	same	day!).	
The	purpose	of	this	is	twofold:	

• Important	decisions	or	agreements	are	recorded,	so	they	are	not	forgotten!	
• The	second	purpose	is	to	record	unsolved	issues	that	require	follow	up	action,	so-called	

action	items.	Each	action	item	is	assigned	to	one	(preferred)	or	more	team	members	with	a	
specific	deadline	for	completion.	

	

	

	

	

	

22	

2 	 System	Engineering	
What	is	System	Engineering?	It	is	a	complex	process	to	develop	modern	and	professional	systems	
today	(Halvorsen,	Hans-Petter	(2017).	Software	Development	-	A	Practical	Approach!).	

System	Engineering:	The	process	of	analyzing	and	designing	an	entire	system,	including	the	
hardware	and	the	software.	

Software	Engineering:	The	discipline	for	creating	software	applications.	A	systematic	approach	to	
the	design,	development,	testing,	and	maintenance	of	software.	

A	lot	of	systems	today	have	a	mix	of	hardware	and	software	that	is	tightly	integrated,	like	modern	
smartphones,	tablets,	etc.	To	create	such	systems	involves	a	lot	of	different	disciplines.	

Software,	is	any	set	of	machine-readable	instructions	that	directs	a	computer's	processor	to	
perform	specific	operations.	The	term	is	used	to	contrast	with	computer	hardware,	the	physical	
objects	(processor	and	related	devices)	that	carry	out	the	instructions.	Computer	hardware	and	
software	require	each	other	and	neither	can	be	realistically	used	without	the	other,	see	Figure	2-1.	

	

Figure	2-1:	Hardware	and	Software	working	together	

In	Figure	2-2	we	see	a	typical	network	and	infrastructure	that	is	part	of	the	system.	

23	 	 2	System	Engineering	

	

Figure	2-2:	Typical	Network	and	Infrastructure	in	Software	Development	

In	Figure	2-3	we	see	the	different	phases	involved	in	the	Software	Development	Lifecycle	(SDLC).	

	

Figure	2-3:	The	Software	Development	Lifecycle	

The	main	parts	or	phases	in	the	software	development	process	are:	

24	 	 2	System	Engineering	

• Planning	
• Requirements	Analysis	
• Design	
• Implementation	
• Testing	
• Deployment	and	Maintenance	

	

	

25	

3 	 Requirements	Engineering	
Before	you	start	to	implement	a	software	system,	you	need	to	understand	what	the	system	is	
intended	to	do.	This	intended	functionality	is	the	“Requirements”.	The	process	of	creating	these	
requirements	is	called	Requirement	Analysis	or	Requirement	Engineering.	It	is	the	process	of	
understanding	what	you	want	and	what	you	need	in	your	software.	

What	is	Requirements	Engineering?	Requirements	is	the	bridge	between	the	real	world	and	the	
software	system	(Figure	3-1).	

	

Figure	3-1:	Requirements	Engineering	

You	should	create	Design	and	Specifications	(including	UML)	before	you	start	Coding.	UML	
diagrams	is	a	general	method/standard	to	do	just	that.	But	UML	can	also	be	used	to	document	
your	code	afterwards	(so-called	Reverse	Engineering).	

Figure	3-2	shows	an	example	why	Requirements	Engineering	is	needed.	

26	 	 3	Requirements	Engineering	

	

Figure	3-2:	Why	Requirements	Engineering	is	needed	

3.1 UML	
UML	is	a	modeling	language	used	in	software	engineering.	It	is	very	popular	within	OOA,	OOD,	
OOP.	UML	was	developed	in	the	1990s	and	adapted	as	an	ISO	standard	in	2000.	UML	2.2	has	14	
different	types	of	diagrams.	

	

Figure	3-3:	UML	Diagrams	

27	 	 3	Requirements	Engineering	

We	have	2	main	categories	of	diagrams:	

• Structure	Diagrams	
• Behavior	Diagrams	

o Interaction	Diagrams	(sub	category	of	Behavior	Diagrams)	

	 The	diagrams	available	in	UML	are:	

• Class	Diagram	
• Component	Diagram	
• Deployment	Diagram	
• Object	Diagram	
• Package	Diagram	
• Activity	Diagram	
• Sequence	Diagram	
• Communication	Diagram	
• Use	Case	Diagram	
• State	Machine	Diagram	
• Composite	Structure	Diagram	
• Interaction	Overview	Diagram	
• Timing	Diagram	

Why	use	UML?	

• Design:	 	 	
o Forward	Design:	doing	UML	before	coding.	Makes	it	easier	to	create	the	code	in	a	

structured	manner	
o Backward	Design:	doing	UML	after	coding	as	documentation	

• Code	

3.1.1 UML	Software	

There	exists	hundreds	of	different	software	for	creating	UML	diagrams,	here	I	mention	just	a	few:	

• Visio	 	
• Enterprise	Architect	
• Visual	Studio	(Enterprise)	

With	the	Visual	Studio	Enterprise	edition,	we	can	create	some	of	the	most	used	UML	diagrams,	
see	Figure	3-4.	

These	diagrams	are	available	from	the	“Architecture”	menu	in	Visual	Studio.	

28	 	 3	Requirements	Engineering	

	

Figure	3-4:	Create	UML	diagrams	with	Visual	Studio	Enterprise	

3.2 Use	Case	
One	of	the	most	used	UML	diagrams	is	the	Use	Case	Diagram.	

In	Figure	3-5	we	see	a	Use	Case	example.	

29	 	 3	Requirements	Engineering	

	

Figure	3-5:	Use	Case	example	

3.3 Sequence	Diagram	
In	Figure	3-6	we	see	an	example	of	a	Sequence	Diagram.	

	

Figure	3-6	Sequence	Diagram	Example	

Nurse

Medical receptionist
Manager

Register
patient

View
personal info.

View record

Generate
report

Export
statistics

Doctor
Edit record

Setup
consultation

30	 	 3	Requirements	Engineering	

3.4 Class	Diagram	
Figure	3-7	shows	a	Class	Diagram	Example.	

	

Figure	3-7:	Class	Diagram	Example	

3.5 Database	Design	
ER	Diagram	(Entity-Relationship	Diagram)	is	used	for	design	and	modeling	of	databases.	It	specifies	
tables	and	relationship	between	them	(Primary	Keys	and	Foreign	Keys),	see	Figure	3-8.	

	

Figure	3-8:	ER	diagram	with	Primary	Keys	and	Foreign	Keys	relationships	

31	 	 3	Requirements	Engineering	

We	can	use	a	lot	of	different	tools	to	create	such	ER	diagram.	In	this	document	I	will	only	focus	on	
the	following:	

• MS	Visio	
• ERwin	

In	Figure	3-9	we	see	a	typical	ER	diagram	created	in	MS	Visio.	

	

Figure	3-9:	ER	Diagram	Example	(MS	Visio)	

ERwin	is	a	very	good	tool	for	creating	ER	diagrams,	but	it	is	expensive.	But	there	exists	a	free	
edition	called	“CA	ERwin	Data	Modeler	Community	Edition”	–	this	is	a	free	edition	that	contains	a	
subset	of	the	standard	product.	

In	Figure	3-10	we	see	the	same	database	model	in	ERwin	as	the	example	shown	in	Figure	3-9.	 	

32	 	 3	Requirements	Engineering	

	

Figure	3-10:	Database	Modelling	with	ERwin	

	

	

33	

4 	 Visual	Studio	Team	Services	 	
Web:	https://www.halvorsen.blog/documents/programming/software_engineering/vsts/	 	

Visual	Studio	Team	Services	(VSTS),	previously	known	as	Visual	Studio	Online	(VSO)	is	an	
Application	Lifecycle	Management	(ALM)	system,	i.e.,	the	system	takes	care	of	all	aspects	in	
software	development	from	planning,	requirements,	coding,	testing,	deployment	and	
maintenance.	

Key	Features:	

• VSTS	is	a	Source	Code	Control	(SCC),	Bug	Tracking,	Project	Management,	and	Team	
Collaboration	platform	

• Integrated	with	Visual	Studio	

• VSTS	in	the	Cloud	(This	means	you	don’t	need	to	host	the	server	yourself)	

• Free	for	up	to	5	users	 	

You	don’t	need	to	install	VSTS,	but	you	need	to	create	an	account	to	get	started	(Figure	4-1):	

www.visualstudio.com	

	

Figure	4-1:	Visual	Studio	Team	Services	–	Create	an	Account	

34	 	 4	Visual	Studio	 	 	

Visual	studio	Team	Services	is	a	great	tool	if	you	work	in	a	project	where	you	need	to	share	code,	
documents,	etc.	between	the	team	members.	

When	you	have	created	an	account,	you	need	to	create	a	New	Team	Project	(see	Figure	4-2)	

	

Figure	4-2:	Create	New	Team	Project	

Then	you	can	start	to	manage	your	Team	Members,	Make	Plans	and	Requirements,	Add	Source	
Code,	etc.	See	Figure	4-3.	

	

Figure	4-3:	Visual	Studio	Team	Services	–	Project	Page	

35	 	 4	Visual	Studio	 	 	

The	coding	is	done	in	Visual	Studio	as	normal,	you	just	need	to	link	your	Visual	Studio	Team	
Services	Team	Project	with	Visual	Studio.	The	easiest	way	to	do	this	linking	is	to	click	“Open	in	
Visual	Studio”.	

	

In	Visual	Studio	you	can	add	and	upload	code	or	other	files	to	Visual	Studio	Online.	This	can	be	
done	directly	fro	the	Solutions	Explorer	(just	right	click	and	select	Add	Solution	to	Source	
Control…)	or	using	the	“Source	Control	Explorer”.	

	

Figure	4-4:	Using	Visual	Studio	Team	Services	from	Visual	studio	

If	you	are	creating	new	projects,	make	sure	to	select	“Add	to	source	control”	(Visual	Studio	Team	
Services)	in	the	New	Project	dialog	box.	See	Figure	4-5.	

36	 	 4	Visual	Studio	 	 	

	

Figure	4-5:	Add	New	Project	to	Source	Control	(VSTS)

	

37	

5 	 Software	Architecture	
What	is	Software	architecture?	Software	architecture	is	the	high	level	structure	of	a	software	
system,	the	discipline	of	creating	such	structures,	and	the	documentation	(and	Implementation)	of	
these	structures.	

Figure	5-1	shows	different	types	of	software	architecture.	

	

Figure	5-1:	Software	Architecture	

We	will	discuss	Web	Services	in	detail	in	chapter	11	Web	Services.	

5.1 Client-Server	Architecture	
The	Client-Server	architecture	is	the	most	common	type	(see	Figure	5-2).	

OPC	typically	uses	the	Client-Server	model,	where	we	have	an	OPC	Server	and	one	or	more	OPC	
Clients.	More	about	OPC	in	chapter	21	OPC.	

	

38	 	 5	Software	Architecture	 	

	

Figure	5-2:	Client-Server	Architecture	

5.2 3-Tier	Architecture	
In	software	engineering,	multi-tier	architecture	(often	referred	to	as	n-tier	architecture)	is	a	client–
server	architecture	in	which	presentation,	application	processing,	and	data	management	functions	
are	physically	separated.	The	most	widespread	use	of	multi-tier	architecture	is	the	three-tier	
architecture.	

N-tier	application	architecture	provides	a	model	by	which	developers	can	create	flexible	and	
reusable	applications.	 	

By	segregating	an	application	into	tiers,	developers	acquire	the	option	of	modifying	or	adding	a	
specific	layer,	instead	of	reworking	the	entire	application.	 	

A	three-tier	architecture	is	typically	composed	of	a	presentation	tier,	a	business/logic	tier,	and	a	
data	storage	tier.	

Figure	5-3	shows	the	3-tier	architecture	model.	This	architecture	is	commonly	used	in	modern	
software	systems.	 	

Note!	The	different	layers	can	be	on	the	same	computer	(Logic	Layers)	or	on	different	Computers	
in	a	network	(Physical	Layers)	

2-tier:	The	database-centric	style.	Typically,	the	clients	communicate	directly	with	the	database.	

A	3-tier	style,	in	which	clients	do	not	connect	directly	to	the	database.	

39	 	 5	Software	Architecture	 	

Why	3-Tier	(N-Tier	Architecture?).	Here	are	some	reasons:	

• Flexible	applications	
• Reusable	code	
• Code	once,	use	many	times	
• Modularized	
• You	need	only	to	change	part	of	the	code	
• You	can	deploy	only	one	part	
• You	can	Test	only	one	part	
• Multiple	Developers	
• Different	parts	(Tiers)	can	be	stored	on	different	computers	
• Different	Platforms	and	Languages	can	be	used	
• etc.	 	

	

Figure	5-3:	3-Tier	Architecture	

Figure	5-4	shows	a	3-tier	architecture	with	physical	layers.	

40	 	 5	Software	Architecture	 	

	

Figure	5-4:	3-Tier	Application	with	Physical	Layers	

Presentation	Tier	

• This	is	the	topmost	level	of	the	application.	 	

• The	presentation	tier	displays	information	related	to	such	services	as	browsing	
merchandise,	purchasing	and	shopping	cart	contents.	 	

• It	communicates	with	other	tiers	by	which	it	puts	out	the	results	to	the	browser/client	tier	
and	all	other	tiers	in	the	network.	 	

• In	simple	terms	it	is	a	layer	which	users	can	access	directly	such	as	a	web	page,	or	an	
operating	systems	GUI	

Application	tier	(business	logic,	logic	tier,	data	access	tier,	or	middle	tier)	

• The	logical	tier	is	pulled	out	from	the	presentation	tier	and,	as	its	own	layer.	 	

• It	controls	an	application’s	functionality	by	performing	detailed	processing.	

Data	tier	

• This	tier	consists	of	database	servers.	Here	information	is	stored	and	retrieved.	 	

• This	tier	keeps	data	neutral	and	independent	from	application	servers	or	business	logic.	 	

• Giving	data	its	own	tier	also	improves	scalability	and	performance.	

Figure	5-5	shows	an	example	where	an	App	for	different	platform,	such	as,	e.g..,	PC,	different	
types	of	smartphones	and	Tablets	can	share	some	of	the	same	layers.	

41	 	 5	Software	Architecture	 	

	

Figure	5-5:	Different	Devices	sharing	the	same	Layers	

Typically,	you	can	develop	the	server-side	code	which	is	common	for	all	platforms.	In	addition	you	
need	to	develop	a	Presentation	tier	for	each	platform	(iOS,	Android,	Windows,	…).	

	

Figure	5-6:	Server-side	and	Client-side	Components	

42	 	 5	Software	Architecture	 	

In	Figure	5-7	we	see	how	3	layer	architecture	are	used	in	a	so-called	Fat-Client	vs.	a	Thin-Client.	A	
Thin	Client	is	typically	a	Web	Page	where	all	the	Business	and	Data	Logic	runs	on	one	or	more	
servers.	

	

Figure	5-7:	Fat	Client	vs.	Thin	Client	

5.2.1 3-Tier	Architecture	with	Visual	Studio	

Figure	5-8	shows	how	you	can	develop	a	3-Tier	(or	a	N-Tier/Multilayer)	Application.	

43	 	 5	Software	Architecture	 	

	

Figure	5-8:	3-Tier	Architecture	with	Visual	Studio	

Each	layer/tier	are	divided	into	Projects	in	Visual	Studio.	In	the	Solution	explorer	you	can	easily	
create	new	projects	or	add	existing	projects	into	a	solution.	 	

5.3 API	
API	-	Application	Programming	Interface.	A	specification	of	how	some	software	components	
should	interact	with	each	other.	A	library	with	functions,	etc.	you	can	use	in	your	code	

Examples:	

• Windows	API	
• Java	API	
• ADO.NET	
• Etc.	 	

But	you	can	(and	you	should!)	also	create	your	own	API	that	you	use	internally	in	the	team	or	
expose	to	others.	

	

44	 	 5	Software	Architecture	 	

	

Figure	5-9:	API	Example	

Figure	5-10	shows	a	typical	example	of	development	and	use	of	a	common	Database	API.	

	

Figure	5-10:	Typical	Creation	and	Use	of	a	Database	API	

Database	Communication	API.	Stored	Procedures	and	Views	as	a	natural	part	of	such	a	Database	
API.	API	using	Layers:	You	A	good	practice	is	to	create	a	New	Project	with	one	or	more	
Classes/Methods	where	you	put	the	API	code	that	can	be	shared	among	the	Developers.	Each	
Developer	can	then	add	this	Project	to	their	Solution	in	order	to	use	it	and	maintain	it.	

The	benefits	of	API	driven	design:	

45	 	 5	Software	Architecture	 	

When	an	API	is	used	in	a	project,	it	

• Allows	to	focus	on	the	project.	

• Saves	development	time.	

• Reduces	errors	and	debugging.	

• Facilitates	modular	design.	

• Provides	a	consistent	development	platform.	

API	driven	design	requires	planning	and	programming	skills.	API	driven	design	is	costly	initially,	but	
it	pays	in	the	long	run.	So,	obviously,	creating	APIs	is	good	software	practice	in	most	cases.	 	

	 	

	

	

	

	

	

	

	

46	

6 	 Implementation	
The	ultimate	goal	of	most	software	engineering	projects	is	to	produce	a	working	program.	 	

The	act	of	transforming	the	detailed	design	into	a	valid	program	in	some	programming	language,	
together	with	all	its	supporting	activities	is	referred	to	as	implementation.	

The	implementation	phase	involves	more	than	just	writing	code.	Code	also	needs	to	be	tested	and	
debugged	as	well	as	compiled	and	built	into	a	complete	executable	product.	 	

We	usually	need	to	use	a	Source	Code	Control	Tool	in	order	to	keep	track	of	different	versions	of	
the	code.	Recommended	tools	are:	Visual	Studio	Online	or	GitHub.	 	

In	many	cases	the	detailed	design	is	not	done	explicitly	(in	the	Design	Phase)	but	is	left	as	part	of	
the	implementation.	Doing	the	detailed	design	as	part	of	the	implementation	is	usually	faster,	but	
it	may	result	in	a	less	cohesive	and	less	organized	design,	because	the	detailed	design	of	each	
module	will	usually	be	done	by	a	different	person.	In	small	projects,	the	detailed	design	is	usually	
left	as	part	of	the	implementation	

In	the	practical	implementation	aspects	of	the	topics	in	this	document	we	will	focus	on	the	
following	programming	languages:	

• LabVIEW	
• Visual	Studio	and	C#	
• MATLAB	

These	3	tools	are	very	different	and	all	have	their	strengths	and	weaknesses.	These	tools	also	have	
different	application	areas.	

6.1 LabVIEW	
LabVIEW	Is	a	graphical	programming	language	used	by	scientists	and	engineers.	LabVIEW	is	well	
suited	for	DAQ	Applications	and	Control	and	Simulation	Applications.	

Since	National	Instruments	(the	vendor	of	LabVIEW)	also	make	hardware	and	DAQ	equipment,	the	
integration	with	hardware	and	software	are	straightforward.	

The	vendor's	web	site:	www.ni.com.	

LabVIEW	has	the	same	things	as	other	programming	languages,	but	in	a	graphical	way!	

47	 	 6	Implementation	 	

	

Figure	6-1:	LabVIEW	Example	

LabVIEW	Training	Resources:	

https://www.halvorsen.blog/documents/programming/labview/	 	 	

6.2 Visual	Studio	and	C#	
C#	is	pronounced	“see	sharp”.	C#	is	an	object-oriented	programming	language	and	part	of	the	
.NET	family	from	Microsoft.	C#	is	intended	to	be	a	simple,	modern,	general-purpose,	object-
oriented	programming	language.	 	

C#	is	very	similar	to	C++	and	Java.	C#	is	developed	by	Microsoft	and	works	only	on	the	Windows	
platform. C#	is	based	on	the	.NET	Framework	(pronounced	“dot	net”).	 	

.NET	is	a	software	framework	that	runs	primarily	on	Microsoft	Windows.	 	

Visual	Studio	is	the	Integrated	Development	Environment	(IDE)	you	use	when	programming	in	C#	
and	the	.NET	platform. 	

The	vendor's	web	site:	www.visualstudio.com	

48	 	 6	Implementation	 	

	

Figure	6-2:	Visual	Studio	

6.3 MATLAB	
MATLAB	is	a	tool	for	technical	computing,	computation	and	visualization	in	an	integrated	
environment.	MATLAB	is	an	abbreviation	for	MATrix	LABoratory,	so	it	is	well	suited	for	matrix	
manipulation	and	problem	solving	related	to	Linear	Algebra,	Modelling,	Simulation	and	Control	
applications,	etc.	

MATLAB	is	very	easy	to	use	compared	to	similar	tools,	so	it	is	a	good	tool	to	start	with	for	
inexperienced	users.	At	the	same	time,	it	is	very	powerful	and	it	can	be	used	for	advanced	
simulations,	so	you	will	never	grow	away	from	it	-	neither	in	school	or	work	context.	

The	vendor's	web	site:	www.mathworks.com	

Figure	6-3	shows	the	MATLAB	environment.	

49	 	 6	Implementation	 	

	

Figure	6-3:	MATLAB	

MATLAB	Training	Resources:	

https://www.halvorsen.blog/documents/programming/matlab/	 	

	

	

50	

7 	 Testing	
Web:	https://www.halvorsen.blog/documents/programming/software_engineering/testing/	 	

Different	people	have	come	up	with	various	definitions	for	Software	Testing,	but	generally,	the	
goal	with	testing	is:	

• To	ensure	that	the	software	meets	the	agreed	requirements	and	design	
• The	application	works	as	expected	
• The	application	doesn’t	contain	serious	bugs	
• Meets	its	intended	use	as	per	user	expectations	

Testing	can	be	performed	on	different	levels	and	by	different	persons.	Testing	is	a	very	important	
part	of	software	development.	About	50%	of	the	software	development	is	about	testing	your	
software.	 	

Since	modern	system	engineering	has	become	very	complex,	testing	has	become	a	very	important	
part	of	any	project.	

Since	Software	Development	today	involves	different	platforms,	different	devices,	network,	
servers	and	clients,	etc.,	it	has	become	very	complex	to	test	it.	Today	we	have	not	only	ordinary	
Desktop	Apps,	we	have	Web	Apps,	Mobile	Apps,	Apps	for	TVs,	etc.	

The	software	we	create	is	typically	a	layer	between	the	user	of	the	software	and	the	hardware	and	
the	operating	system	(Figure	7-1).	

51	 	 7	 	 Testing	 	

	

Figure	7-1:	Components	involved	in	Software	Development	&	Testing	

If	we	find	bugs	at	the	earlier	stage,	the	cost	to	fix	this	will	be	less	and	thus	it	will	reduce	the	overall	
cost	of	the	application	(Figure	7-2).	

	

Figure	7-2:	Find	Bugs	at	an	early	stage	

We	have	the	following	stages	in	testing:	

52	 	 7	 	 Testing	 	

1. Development	testing,	where	the	system	is	tested	during	development	to	discover	bugs	
and	defects.	Development	testing	includes	all	testing	activities	that	are	carried	out	by	the	
team	developing	the	system.	 	 	

2. Release	testing,	where	a	separate	testing	team	test	a	complete	version	of	the	system	
before	it	is	released	to	users.	 	

3. User	testing,	where	users	or	potential	users	of	a	system	test	the	system	in	their	own	
environment.	 	

7.1 Levels	of	Testing	
Since	testing	of	advanced	software	systems	is	quite	complex,	we	need	a	systematic	approach	to	
testing	that	involves	different	levels	of	testing	(see	Figure	7-3).	

	

Figure	7-3:	Systematic	Testing	

Short	overview	of	the	different	Test	levels	in	Figure	7-4	(more	details	later):	

• Unit	Tests	are	written	by	the	Developers	as	part	of	the	Programming.	Each	part	is	
developed	and	Unit	tested	separately	(Every	Class	and	Method	in	the	code)	

• Regression	testing	is	testing	the	system	to	check	that	changes	have	not	“broken”	
previously	working	code.	Both	Manually	&	Automatically	(Re-run	Unit	Tests)	

• Integration	testing	means	the	system	is	put	together	and	tested	to	make	sure	everything	
works	together.	

• System	or	validation	testing	is	Black-box	Tests	that	validate	the	entire	system	against	its	
requirements,	i.e.,	Checking	that	a	software	system	meets	the	specifications	 	

53	 	 7	 	 Testing	 	

• Acceptance	Testing:	The	Customer	needs	to	test	and	approve	the	software	before	he	can	
take	it	into	use.	We	have	2	types:	FAT	(Factory	Acceptance	Testing)	and	SAT	(Site	
Acceptance	Testing).	

	

Figure	7-4:	Levels	of	Testing	

7.1.1 Unit	Testing	

Unit	Testing	(or	component	testing)	refers	to	tests	that	verify	the	functionality	of	a	specific	section	
of	code,	usually	at	the	function	level.	In	an	object-oriented	environment,	this	is	usually	at	the	class	
and	methods	level.	

Unit	Tests	are	written	by	the	developers	as	part	of	the	programming.	They	are	automatically	
executed	by	the	system,	e.g.,	Visual	Studio	and	Team	Foundation	Server	have	built-in	functionality	
for	Unit	Testing.	

Sometimes	the	Unit	Tests	are	written	before	you	start	programming,	so-called	Test	Driven	
Development	(TDD).	

54	 	 7	 	 Testing	 	

	

http://geek-and-poke.com	 	

Since	Unit	testing	are	part	of	the	development	process,	so-called	Unit	Tests	Framework	are	usually	
integrated	with	the	IDE.	

Unit	Tests	Frameworks:	

• Visual	Studio	Unit	Test	Framework.	Unit	Tests	are	built	into	Visual	Studio	(no	additional	
installation	needed)	

• JUnit	(Java)	 	

• JUnit	is	a	unit	testing	framework	for	the	Java	programming	language.	

• NUnit	(.NET)	

• NUnit	is	an	open	source	unit	testing	framework	for	Microsoft	.NET.	It	serves	the	
same	purpose	as	JUnit	does	in	the	Java	world	

• PHPUnit	(PHP)	

• LabVIEW	Unit	Test	Framework	Toolkit	

55	 	 7	 	 Testing	 	

• etc.	

Unit	Testing	in	Visual	Studio:	

Visual	Studio	have	built-in	features	for	Unit	Testing.	In	the	Solution	Explorer,	you	just	add	a	“Test	
Project”	as	part	of	your	code	(see	Figure	7-5).	

	

Figure	7-5:	Unit	Test	Project	in	Visual	Studio	

In	Figure	7-6	wee	se	an	example	of	how	you	create	Unit	Tests	in	Visual	Studio	and	C#.	

For	Test	Classes,	you	need	to	use	[TestClass]	and	for	Test	Methods	you	need	to	use	[TestMethod].	
You	also	need	to	add	a	reference	to	the	code	under	test	(select	“Add	Reference”	in	the	Solution	
Explorer	and	include	“using	<namespace>”)	in	your	code.	

56	 	 7	 	 Testing	 	

	

Figure	7-6:	Unit	Test	Principle	in	Visual	Studio	and	C#	

The	basic	concept	in	Unit	Testing	is	to	Compare	the	results	when	running	the	Methods	with	some	
Input	Data	(“Actual”)	with	some	Known	Results	(“Expected”)	

Example:	

Assert.AreEqual(expected, actual, 0.001, ”Test failed because...");

Unit	Tests	–	Best	Practice:	

• A	Unit	Test	must	only	do	one	thing	

• Unit	Test	must	run	independently	

• Unit	Tests	must	not	depend	on	the	environment	

• Test	Functionality	rather	than	implementation	

• Test	public	behavior;	private	behavior	relates	to	implementation	details	

• Avoid	testing	UI	components	

• Unit	Tests	must	be	easy	to	read	and	understand	

• Create	rules	that	make	sure	you	need	to	run	Unit	Tests	(and	they	need	to	pass)	before	you	
are	allowed	to	Check-in	your	Code	in	the	Source	Code	Control	System	

7.1.2 Regression	Testing	

Regression	testing	focuses	on	finding	defects	after	a	major	code	change	has	occurred.	Specifically,	
it	seeks	to	uncover	software	regressions,	or	old	bugs	that	have	come	back.	

57	 	 7	 	 Testing	 	

1. Regression	testing	is	testing	the	system	to	check	that	changes	have	not	“broken”	
previously	working	code.	

2. In	a	manual	testing	process,	regression	testing	is	expensive	but,	with	automated	testing,	it	
is	simple	and	straightforward.	All	tests	are	rerun	every	time	a	change	is	made	to	the	
program.	

3. Tests	must	run	“successfully”	before	the	change	is	committed.	 	

7.1.3 Integration	Testing	

Integration	testing	verifies	the	interfaces	between	components	against	a	software	design.	

7.1.4 System	Testing/Validation	Testing	

System	Testing	follows	Integration	Testing.	 	 It	consists	of	Black-box	Tests	that	validate	the	entire	
system	against	its	requirements.	 	 	 System	Testing	is	about	checking	that	a	software	system	
meets	specifications	and	that	it	fulfills	its	intended	purpose.	System	Testing	is	often	executed	by	
an	independent	group	(QA	group).	QA	–	Quality	Assurance.	

Since	system	tests	make	sure	the	requirements	are	fulfilled,	they	must	systematically	validate	each	
requirement	in	the	SRS	(Software	Requirements	Specification).	

7.1.5 Acceptance	Testing	

Customers	test	a	system	to	decide	whether	or	not	it	is	ready	to	be	accepted	from	the	system	
developers	and	deployed	in	the	customer	environment.	It	is	primarily	for	custom	systems.	 	

In	Figure	7-7	we	see	a	typical	acceptance	test	process.	

	

Figure	7-7:	Acceptance	Testing	

The	steps	are:	

• Define	acceptance	criteria	
• Plan	acceptance	testing	
• Derive	acceptance	tests	

58	 	 7	 	 Testing	 	

• Run	acceptance	tests	
• Negotiate	test	results	
• Reject/accept	system	

We	have	2	main	types	of	Acceptance	Testing:	

• FAT	–	Factory	Acceptance	Testing	
• SAT	–	Site	Acceptance	Testing	

FAT	–	Factory	Acceptance	Testing	is	usually	performed	in	the	Test	Environment	at	the	software	
company.	

SAT	–	Site	Acceptance	Testing	is	performed	at	the	Customer	in	the	actual	Production	Environment.	
This	is	the	final	step	to	determine	if	the	requirements	of	a	specification	or	contract	are	met.	

If	the	test	is	accepted,	the	software	is	officially	handed	over	to	the	customer.	

Note!	Other	terms	and	definitions	are	used	as	well	in	different	literature.	

7.2 Test	Categories	
We	can	divide	testing	into	2	different	categories,	which	is:	

• Black-box	Testing	
• White-box	Testing	

7.2.1 Black-box	Testing	

Black-box	testing	is	a	method	of	software	testing	that	examines	the	functionality	of	an	application	
(what	the	software	does)	without	going	inside	the	internal	structure	(White-box	Testing).	 	

You	need	no	knowledge	of	how	the	system	is	created.	Black-box	testing	can	be	done	by	a	person	
who	only	know	what	the	software	is	supposed	to	do.	You	may	compare	to	driving	a	Car	–	you	
don’t	need	to	know	how	it	is	built	in	order	to	test	it.	

7.2.2 White-box	Testing	

In	White-box	Testing	you	need	to	have	knowledge	of	how	(Design	and	Implementation)	the	
system	is	built.	White-box	Testing	is	also	called	“Glass-box	testing”.	

In	Figure	7-8	we	see	how	White-box	Testing	is	working.	

59	 	 7	 	 Testing	 	

	

Figure	7-8:	White-box	Testing	

	

60	

8 	 Documentation	
During	the	software	development,	a	lot	of	documentation	(Figure	8-1)	is	created	in	the	different	
phases	of	the	development.	

	

Figure	8-1:	Example	of	Documentation	during	the	SDLC	

Some	documents	are	for	internal	use	inside	the	software	company	or	inside	the	development	
team,	while	other	documents	are	important	for	the	stakeholders	and	the	customers	that	are	going	
to	use	the	software	(Figure	8-2).	

61	 	 8	Documentation	

	

Figure	8-2:	Software	Documentation	

Some	important	documents	are:	

• SDP	–	Software	Development	Plan	

• SRS	–	Software	Requirements	Specifications	

o A	document	stating	what	at	application	must	accomplish	

• SDD	–	Software	Design	Document	

o A	document	describing	the	design	of	a	software	application	

• STP	-	Software	Test	Plan	

o Documentation	stating	what	parts	of	an	application	will	be	tested,	and	the	schedule	
of	when	the	testing	is	to	be	performed	

• STD	-	Software	Test	Documentation	

o Introduction,	Test	Plan,	Test	Design,	Test	Cases,	Test	procedures,	Test	Log,	…,	
Summary	

62	 	 8	Documentation	

See	Figure	8-3	for	an	overview	of	documentation	categories	used	in	a	project.	

	

Figure	8-3:	Software	Project	Documentation	

Documentation	produced	during	a	software	Project	can	be	divided	into	2	main	categories:	

• Process	Documentation	

– These	documents	record	the	process	of	development	and	maintenance,	e.g.,	Plans,	
Schedules	(e.g.,	Gantt	Charts),	etc.	

• Product	Documentation	

– These	documents	describe	the	product	that	is	being	developed.	Can	be	divided	into	
2	sub	categories:	

• System	Documentation	

• Used	by	engineers	developing	and	maintaining	the	system	

• User	Documentation	

• Used	by	the	people	that	is	using	the	system	

63	 	 8	Documentation	

Here	are	some	Software	Documentation	Requirements:	

• Should	act	as	a	communication	medium	between	members	of	the	Development	Team	
(Process	Documentation)	

• Information	repository	used	by	Maintenance	Engineers	(Product	Documentation)	

• Information	for	Management	to	help	them	Plan,	Budget	and	Schedule	the	Software	
Development	Process	(Process	Documentation)	

• Some	of	the	documents	should	tell	users	how	to	use	and	administer	the	system	(Product	
Documentation)	

• Documents	for	Quality	Control,	System	Certification,	etc.	(Process/Product	Documentation)	

Satisfying	these	requirements	requires	different	types	of	documents	from	informal	working	
documents	through	professionally	produced	User	Manuals	

8.1 Process	Documentation	
Purpose:	

1. Process	Documentation	is	produced	so	that	the	development	of	the	system	can	be	
managed	

2. It	is	an	essential	component	of	plan-driven	approaches	(e.g.,	Waterfall)	

3. Agile	Approaches:	The	Goal	is	to	minimize	the	amount	of	Process	Documentation	

We	have	different	categories	of	Process	Documentation:	

• Plans,	estimates	and	schedules.	These	are	documents	produced	by	managers	which	are	
used	to	predict	and	to	control	the	software	process.	

• Reports.	These	are	documents	which	report	how	resources	were	used	during	the	process	
of	development.	

• Standards.	These	are	documents	which	set	out	how	the	process	is	to	be	implemented.	
These	may	be	developed	from	organizational,	national	or	international	standards.	

• Working	papers.	These	are	often	the	principal	technical	communication	documents	in	a	
project.	They	record	the	ideas	and	thoughts	of	the	engineers	working	on	the	project,	are	
interim	versions	of	product	documentation,	describe	implementation	strategies	and	set	
out	problems	which	have	been	identified.	They	often,	implicitly,	record	the	rationale	for	
design	decisions.	

64	 	 8	Documentation	

• E-mail	messages,	wikis,	etc.	These	records	the	details	of	everyday	communications	
between	managers	and	development	engineers.	

8.2 Product	Documentation	
Purpose:	

• Describing	the	delivered	software	product	

• Unlike	most	process	documentation,	it	has	a	relatively	long	life.	It	must	

• Evolve	in	step	with	the	product	that	it	describes.	Product	documentation	includes	

– User	documentation,	which	tells	users	how	to	use	the	software	product,	

– System	Documentation,	which	is	principally	intended	for	maintenance	engineers.	

8.2.1 System	Documentation	

The	system	documentation	describes	how	the	system	is	designed	and	how	it	works	in	detail.	

1. System	documentation	includes	all	of	the	documents	describing	the	system	itself	from	the	
requirements	specification	to	the	final	acceptance	test	plan.	 	

2. Documents	describing	the	design,	implementation	and	testing	of	a	system	are	essential	if	
the	program	is	to	be	understood	and	maintained.	 	

3. Like	user	documentation,	it	is	important	that	system	documentation	is	structured,	with	
overviews	leading	the	reader	into	more	formal	and	detailed	descriptions	of	each	aspect	of	
the	system.	

For	large	systems	that	are	developed	to	a	customer’s	specification,	the	system	documentation	
should	include:	

• The	requirements	document.	

• A	document	describing	the	system	architecture.	

• For	each	program	in	the	system,	a	description	of	the	architecture	of	that	program.	

• For	each	component	in	the	system,	a	description	of	its	functionality	and	interfaces.	

• Program	source	code	listings,	which	should	be	commented	where	the	comments	should	
explain	complex	sections	of	code	and	provide	a	rationale	for	the	coding	method	used.	 	

65	 	 8	Documentation	

• If	meaningful	names	are	used	and	a	good,	structured	programming	style	is	used,	
much	of	the	code	should	be	self-documenting	without	the	need	for	additional	
comments.	 	

• This	information	is	now	normally	maintained	electronically	rather	than	on	paper	
with	selected	information	printed	on	demand	from	readers.	

• Validation	documents	describing	how	each	program	is	validated	and	how	the	validation	
information	relates	to	the	requirements.	 	

• These	may	be	required	for	the	quality	assurance	processes	in	the	organization.	

• A	System	Maintenance	Guide,	which	describes	known	problems	with	the	system,	
describes	which	parts	of	the	system	are	hardware	and	software	dependent	and	which	
describes	how	evolution	of	the	system	has	been	taken	into	account	in	its	design	

	

66	 	 8	Documentation	

8.2.2 User	Documentation	

Users	of	a	system	are	not	all	the	same.	The	producer	of	documentation	must	structure	it	to	cater	
for	different	user	tasks	and	different	levels	of	expertise	and	experience.	 	

It	is	particularly	important	to	distinguish	between	end-users	and	system	administrators:	

• End-users	use	the	software	to	assist	with	some	task.	 	

– This	may	be	flying	an	aircraft,	managing	insurance	policies,	writing	a	book,	etc.	They	
want	to	know	how	the	software	can	help	them.	They	are	not	interested	in	
computer	or	administration	details.	

• System	administrators	are	responsible	for	managing	the	software	used	by	end-users.	 	

– This	may	involve	acting	as	an	operator	if	the	system	is	a	large	mainframe	system,	as	
a	network	manager	is	the	system	involves	a	network	of	workstations	or	as	a	
technical	guru	who	fixes	end-users	software	problems	and	who	liaises	between	
users	and	the	software	supplier.	

We	have	different	user	documentation,	such	as:	

• User	Manual	
• Installation	Guide	
• Wiki	
• etc.	

67	 	 8	Documentation	

	

http://geek-and-poke.com	 	

User	Manual:	

A	user	guide	or	user's	guide,	also	commonly	known	as	a	manual,	is	a	technical	communication	
document	intended	to	give	assistance	to	people	using	a	particular	system.	It	is	usually	written	by	a	
technical	writer,	although	user	guides	are	written	by	programmers,	product	or	project	managers,	
or	other	technical	staff,	particularly	in	smaller	companies	

The	sections	of	a	user	manual	often	include:	

• A	cover	page	

• A	title	page	and	copyright	page	

• A	preface,	containing	details	of	related	documents	and	information	on	how	to	navigate	the	
user	guide	

• A	content	page	

• A	guide	on	how	to	use	at	least	the	main	functions	of	the	system	(Text	+	Screen	Shots)	

68	 	 8	Documentation	

• A	troubleshooting	section	detailing	possible	errors	or	problems	that	may	occur,	along	with	
how	to	fix	them	

• A	FAQ	(Frequently	Asked	Questions)	

• Where	to	find	further	help,	and	contact	details	

• A	glossary	and,	for	larger	documents,	an	index	

	

	

69	

Part	2 :	Industrial	IT	
In	this	part,	we	introduce	important	topics	within	Industrial	IT,	such	as	Data	Communication,	
Database	Systems,	Web	Services,	Modbus,	Virtualization,	Wireless	Systems.	

	

	

	

70	

9 	 Data	Communication	
Computer	hardware	and	software	require	each	other	and	neither	can	be	realistically	used	without	
the	other,	see	Figure	2-1.	

	

Figure	9-1:	Hardware	and	Software	working	together	

In	Figure	2-2	we	see	a	typical	network	and	infrastructure	that	the	software	relies	on.	

	

Figure	9-2:	Typical	Network	and	Infrastructure	

71	 	 9	Data	Communication	 	

Industrial IT and Automation - Part 2:	Industrial	IT

9.1 Network	
Knowledge	of	network	topology,	network	components	and	network	protocols	are	important	
within	Industrial	IT	and	Automation.	

See	the	next	chapters	for	details.	

	

	

	

72	

10 	 Database	Systems	
Web:	https://www.halvorsen.blog/documents/technology/database/	 	

Almost	any	kind	of	software	program	uses	a	database	for	back-end	storage,	e.g.,	Facebook,	etc.	

Not	too	long	ago,	this	(Figure	10-1)	was	the	only	data-storage	device	most	companies	needed.	
Those	days	are	over.	

	

Figure	10-1:	Database	System	in	in	the	old	days	

A	Database	is	a	structured	way	to	store	lots	of	information.	 	 The	information	is	stored	in	different	
tables	-	“Everything”	today	is	stored	in	databases!	

Examples:	

• Bank/Account	systems	 	

• Information	in	Web	pages	such	as	Facebook,	Wikipedia,	YouTube,	etc.	

• Educational	Systems,	like	Fronter,	Canvas,	etc.	

• …	lots	of	other	examples!	

Popular	Database	Systems:	

• Microsoft	SQL	Server	
• Oracle	
• MySQL	

	 73	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

• SQLite	
• MS	Access	
• MariaDB	

The	main	focus	in	this	chapter	will	be	Microsoft	SQL	Server.	For	more	information	about	database	
systems.	

10.1 Structured	Query	Language	(SQL)	
Here	we	will	only	give	a	short	introduction	to	Structured	Query	Language	(SQL).	For	more	
information	about	SQL,	please	see	(Halvorsen,	2017.	Structured	Query	Language).	

	

Figure	10-2:	SQL	Overview	

SQL	is	a	Database	Computer	Language	designed	for	Managing	Data	in	Relational	Database	
Management	Systems	(RDBMS).	In	SQL,	we	have	4	different	types	of	queries:	 	

• INSERT	
• SELECT	
• UPDATE	
• DELETE	

Below	we	see	some	examples	of	typical	SQL	queries:	

insert into STUDENT (Name, Number, SchoolId)
values ('John Smith', '100005', 1)

	 74	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

select SchoolId, Name from SCHOOL

select * from SCHOOL where SchoolId > 100

update STUDENT set Name='John Wayne' where StudentId=2

delete from STUDENT where SchoolId=3

These	are	referred	to	as	CRUD	–	Create	(Insert),	Read	(Select),	Update	and	Delete.	 	

Here	are	some	“Best	practice”	recommendations	for	creating	tables	in	a	database	system:	

• Tables:	Use	upper	case	and	singular	form	in	table	names	–	not	plural,	e.g.,	“STUDENT”	(not	
students)	

• 	 Columns:	Use	Pascal	notation,	e.g.,	“StudentId”	
• 	 Primary	Keys:	 	

– If	the	table	name	is	“COURSE”,	name	the	Primary	Key	column	“CourseId”,	etc.	
– “Always”	use	Integer	and	Identity(1,1)	for	Primary	Keys	

• 	 Specify	Required	Columns	(NOT	NULL)	–	i.e.,	which	columns	that	need	to	have	data	or	not	
• 	 Data	Types:	Standardize	on	these	Data	Types:	int,	float,	varchar(x),	datetime,	bit	
• Use	English	for	table	and	column	names	
• Avoid	abbreviations!	(Use	RoomNumber	–	not	RoomNo,	RoomNr,	...)	

Advanced	SQL	Features:	

• Views:	Views	are	virtual	tables	for	easier	access	to	data	stored	in	multiple	tables.	

• Stored	Procedures:	A	Stored	Procedure	is	a	precompiled	collection	of	SQL	statements.	In	a	
stored	procedure,	you	can	use	if	sentence,	declare	variables,	etc.	

• Triggers:	A	database	trigger	is	code	that	is	automatically	executed	in	response	to	certain	
events	on	a	particular	table	in	a	database.	

• Functions:	With	SQL	and	SQL	Server	you	can	use	lots	of	built-in	functions	or	you	may	
create	your	own	functions	

In	Figure	10-3	we	see	how	these	things	are	part	of	the	Data	tier	in	the	Application.	

	 75	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	10-3:	Data	Tier	

10.2 SQL	Server	
SQL	Server	(Figure	10-4)	consists	of	a	Database	Engine	and	a	Management	Studio.	The	Database	
Engine	has	no	graphical	interface	-	it	is	just	a	service	running	in	the	background	of	your	computer	
(preferable	on	the	server).	The	Management	Studio	is	graphical	tool	for	configuring	and	viewing	
the	information	in	the	database.	It	can	be	installed	on	the	server	or	on	the	client	(or	both).	

	

Figure	10-4:	SQL	Server	

	 76	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

In	Figure	10-5	we	see	the	SQL	Server	Management	Studio.	

	

Figure	10-5:	SQL	Server	Management	Studio	

10.3 ODBC	
ODBC	(Open	Database	Connectivity)	is	a	standardized	interface	(API)	for	accessing	the	database	
from	a	client.	You	can	use	this	standard	to	communicate	with	databases	from	different	vendors,	
such	as	Oracle,	SQL	Server,	etc.	The	designers	of	ODBC	aimed	to	make	it	independent	of	
programming	languages,	database	systems,	and	operating	systems.	 	

Figure	10-6	shows	the	ODBC	Data	Source	Administrator	Tool.	

	 77	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	10-6:	ODBC	

You	find	it	in	Windows	in	the	Control	Panel:	Control	Panel	→	Administrative	Tools	→	Data	Sources	
(ODBC).	

	

Figure	10-7:	ODBC	Configuration	–	Step	by	Step	

10.4 Database	Communication	in	LabVIEW	

10.4.1 LabVIEW	SQL	Toolkit	

	 78	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

For	Easy	Database	Communication	with	LabVIEW	you	can	use	my	SQL	Toolkit	(Figure	10-8).	

	

Figure	10-8:	LabVIEW	SQL	Toolkit	

Download	for	free	here:	

https://www.halvorsen.blog/documents/technology/database/	 	 	

In	Figure	10-9	we	see	an	example	where	we	get	data	from	a	database	into	LabVIEW.	

	

Figure	10-9:	Get	Data	from	the	Database	into	LabVIEW	

Figure	10-10	we	see	an	example	where	we	write	data	from	LabVIEW	into	the	database.	

	

Figure	10-10:	Write	Data	from	LabVIEW	into	the	Database	

10.4.2 LabVIEW	Example	

In	this	example	(Figure	10-11)	we	are	logging	temperature	data	from	a	sensor	into	the	database.	

	 79	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	10-11:	LabVIEW	Example	(Front	Panel)	–	Logging	Temperature	Data	to	a	Database	

Figure	10-12	shows	the	block	diagram	(code).	

	

Figure	10-12:	LabVIEW	Example	(Block	Diagram)	–	Logging	Temperature	Data	to	a	Database	

10.5 Database	Communication	in	C#	

10.5.1 C#	Example	

Below	we	see	an	example	(Code	Snippet	10-1):	

Code	Snippet	10-1:	Database	Communication	in	C#	

using System.Data.SqlClient;
using System.Data.SqlTypes;
using System.Data;

public class Book
 {
 public int BookId { get; set; }

	 80	 	 10	Database	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

 public string Title { get; set; }
 public string Isbn { get; set; }
 public string PublisherName { get; set; }
 public string AuthorName { get; set; }
 public string CategoryName { get; set; }
 public List<Book> GetBooks(string connectionString)
 {
 List<Book> bookList = new List<Book>();
 SqlConnection con = new SqlConnection(connectionString);
 string selectSQL = "select BookId, Title, Isbn, PublisherName,
AuthorName, CategoryName from GetBookData";
 con.Open();
 SqlCommand cmd = new SqlCommand(selectSQL, con);
 SqlDataReader dr = cmd.ExecuteReader();
 if (dr != null)
 {
 while (dr.Read())
 {
 Book book = new Book();
 book.BookId = Convert.ToInt32(dr["BookId"]);
 book.Title = dr["Title"].ToString();
 book.Isbn = dr["ISBN"].ToString();
 book.PublisherName = dr["PublisherName"].ToString();
 book.AuthorName = dr["AuthorName"].ToString();
 book.CategoryName = dr["CategoryName"].ToString();
 bookList.Add(book);
 }
 }
 return bookList;
 }
}

For	more	information,	details	and	examples,	please	see	the	Tutorial	“Introduction	to	Visual	Studio	
and	C#”	available	on	my	Blog.	

	

	

81	

11 	 Web	Services	
A	growing	trend	is	to	use	a	technology	built	on	TCP	and	HTTP	called	Web	Services.	 	

A	Web	Service	is	an	application	programming	interface	(API)	that	can	be	accessed	via	HTTP	
requests.	When	called,	Web	Services	return	a	human-readable	response.	 	

Modern	Web	Services	use	JSON	responses	but	other	response	options	are	XML,	HTML,	or	plain	
text.	 	

What	is	Web	Services	and	why	do	we	need	them?	

We	start	with	the	problem	(or	the	challenge):	How	do	we	share	data	between	devices	in	a	typical	
modern	network	(see	Figure	11-1)?	

	

Figure	11-1:	Typical	Network	

Direct	connection	between	the	database	(which	is	located	on	a	server	either	in	a	local	network	in	
on	the	Internet)	and	the	clients	that	need	the	data	is	normally	not	possible,	due	to	security,	
compatibility	issues,	etc.	(Firewalls,	Hacker	Attacks,	etc.),	see	Figure	11-2.	

	

82	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-2:	Direct	Access	to	Database	is	normally	not	allowed	

Direct	connection	in	a	Local	Network	(behind	the	Firewall)	is	normally	OK	–	but	not	over	the	
Internet.	

	

So	what	is	the	solution	to	this	problem	or	challenge?	You	have	probably	guessed	it	already,	the	
solution	is	Web	Services.	

Web	Services	uses	standard	web	protocols	like	HTTP,	etc.	HTTP	is	supported	by	all	Web	Browser,	
Servers	and	many	Programming	Languages.	This	means	you	can	create	and	use	Web	Services	in	all	
the	popular	programming	languages.	See	Figure	11-3.	

With	Web	Services	you	have	no	problems	with	Firewalls.	If	you	have	access	to	the	Web,	you	will	
have	access	to	your	Data.	

	

	

83	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-3:	Web	Service	

There	are	several	reasons	why	engineers	and	IT	departments	are	choosing	Web	Services	over	
other	communication	technologies.	 	

• First,	Web	Services	are	straightforward	and	simple	to	access	from	any	programming	
language,	including	C++,	Objective	C,	C#	and	LabVIEW.	 	

• Second,	since	Web	Services	sit	on	top	of	common	network	protocols,	the	communication	is	
considered	“IT	friendly”	compared	with	proprietary	network	protocols.	 	

• Third,	Web	Services	can	also	be	easily	encrypted	via	industry-standard	technologies	like	
Secure	Sockets	Layer	(SSL)	or	Transport	Layer	Security	(TLS).	 	

11.1 Web	Services	with	LabVIEW	 	
LabVIEW	has	full	support	for	both	creating	Web	Services	as	well	as	consuming	Web	Services.	See	
Figure	11-4.	

84	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-4:	LabVIEW	Web	Service	

In	LabVIEW,	you	create	a	Web	Service	from	the	Project	Explorer.	You	need	to	create	either	a	New	
LabVIEW	Project	or	use	your	existing	Project.	

In	the	Project	Explorer,	you	need	to	right-click	on	“My	Computer”	and	then	select	New->Web	
Service	(see	Figure	11-5).	

	

85	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-5:	Creating	Web	Service	in	LabVIEW	

Next,	you	need	to	create	one	or	more	Web	Service	Methods.	See	Figure	11-6.	

	

Figure	11-6:	Create	a	Web	Service	Method	

86	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

Then	you	need	to	create	the	code	(your	Block	Diagram)	for	your	Web	Service	Method.	

In	this	example,	we	just	make	a	simple	temperature	simulator	that	calculates	a	random	
temperature	value	between	20	and	50	degrees	Celsius.	See	Figure	11-7.	

	

Figure	11-7:	LabVIEW	Web	Service	Method	Example	

Note!	There	is	NOT	need	for	a	While	Loop	(neither	a	Stop/Exit	button)	in	your	LabVIEW	Web	
Service	Method,	because	these	things	are	handled	by	the	Web	Service	itself.	

When	you	have	created	your	code/block	diagram,	you	need	to	define	inputs	and	outputs,	or	the	
interface.	You	do	this	in	the	same	way	as	you	define	inputs	and	outputs	in	a	LabVIEW	SubVI.	

Note!	There	is	no	need	for	a	beautiful	GUI	since	the	user	will	not	be	able	to	see	the	Front	Panel.	

87	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-8:	LabVIEW	Web	Service	Method	Front	Panel	

You	are	now	ready	to	test	the	LabVIEW	Web	Service.	Right-click	and	select	“Start”	in	order	to	start	
the	Web	Service	in	“Debug/Test”	mode.	

	

Figure	11-9:	Testing	the	Web	Service	

Make	sure	to	allow	access	in	the	Firewall.	

88	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

Now	you	are	ready	to	see	if	the	Web	Service	is	working	as	expected.	If	you	don’t	know	the	URL	for	
the	Web	Service,	you	can	right-click	and	select	“Show	Method	URL…”.	

	

Figure	11-10:	Show	Method	URL	Dialog	Box	

Enter	(or	past)	the	URL	in	your	Web	Browser	to	see	if	it	works.	

	

Figure	11-11:	Testing	the	Web	Service	from	your	Web	Browser	

If	you	hit	“Refresh”,	you	should	see	the	temperature	value	is	changing.	

Final	Step:	Publish	the	Web	Service.	

When	you	are	finished,	you	need	to	Publish	the	Web	Service	to	the	Web	Server	

89	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-12:	Publish	the	Web	Service	to	the	Web	Server	

You	find	more	resources	about	Web	Services	and	LabVIEW	Web	Services	on	the	Web	page.	

11.2 Data	Dashboard	for	LabVIEW	
Data	Dashboard	for	LabVIEW	(see	Figure	11-13)	is	an	App	for	iOS/Android	where	you	can	create	
custom	Dashboards	(HMI)	to	Control	and	Monitor	your	LabVIEW	application	remotely	using	
LabVIEW	Web	Services.	You	get	the	best	experience	on	the	iPad	or	Android	Tablets.	

	

90	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-13:	Data	Dashboard	for	LabVIEW	available	on	Smartphones	and	Tablets	

Weather	Station	Example:	

Figure	11-14	we	see	an	example	where	Data	Dashboard	for	LabVIEW	has	been	used	for	presenting	
weather	data	from	the	Weather	Station	we	have	at	the	university.	

91	 	 11	Web	Services	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	11-14:	Weather	Station	Data	Dashboard	

	

	

92	

12 Modbus	

12.1 What	is	Modbus?	
Modbus	is	a	serial	communications	protocol	originally	published	by	Modicon	(now	Schneider	
Electric)	in	1979	for	use	with	its	programmable	logic	controllers	(PLCs).	 	

Simple	and	robust,	it	has	since	become	a	de	facto	standard	communication	protocol,	and	it	is	now	
a	commonly	available	means	of	connecting	industrial	electronic	devices	

The	development	and	update	of	Modbus	protocols	has	been	managed	by	the	Modbus	
Organization	since	April	2004,	when	Schneider	Electric	transferred	rights	to	that	organization	

Modbus	became	the	first	widely	accepted	fieldbus	standard.	

Modbus	protocol	is	defined	as	a	master/slave	protocol,	meaning	a	device	operating	as	a	master	
will	poll	one	or	more	devices	operating	as	a	slave.	

	

Figure	12-1:	Modbus	is	a	Master/Slave	Protocol	

This	means	a	slave	device	cannot	volunteer	information;	it	must	wait	to	be	asked	for	it.	 	

The	master	will	write	data	to	a	slave	device’s	registers,	and	read	data	from	a	slave	device’s	
registers.	A	register	address	or	register	reference	is	always	in	the	context	of	the	slave’s	registers.	

References:	

• Modbus	Organization:	http://www.modbus.org	 	

• Modbus	(Wikipedia):	https://en.wikipedia.org/wiki/Modbus	 	

• Introduction	to	Modbus	(National	Instruments):	
http://www.ni.com/white-paper/7675/en/	 	

93	 	 12	Modbus	 	

Industrial IT and Automation - Part 2:	Industrial	IT

• Modbus	101	-	Introduction	to	Modbus:	
http://www.csimn.com/CSI_pages/Modbus101.html	

• Modbus	TCP/IP:	http://www.rtaautomation.com/technologies/modbus-tcpip/	

• Modbus	RTU:	http://www.rtaautomation.com/technologies/modbus-rtu/	

The	master	typically	is	a	PLC	(Programmable	Logic	Controller),	PC	or	DCS	(Distributed	Control	
System).	A	remote	terminal	unit	(RTU)	is	a	microprocessor-controlled	electronic	device	that	
interfaces	objects	in	the	physical	world	to	a	DCS	or	SCADA	System.	Modbus	RTU	slaves	are	often	
field	devices,	all	of	which	connect	to	the	network	in	a	multi-	drop	configuration.	See	Figure	12-2.	 	

	

Figure	12-2:	Modbus	Overview	

12.2 Modbus	Register	Types	
	 Modbus	supports	4	different	types	of	registers:	

• Coil	(Discrete	Output)	

– Coils	are	1-bit	registers,	used	to	control	discrete	outputs,	Read	or	Write	

• Discrete	Input	

– 1-bit	registers	

• Input	Register	

– 16-bit	data	registers	

• Holding	Register	

– 16-bit	data	registers	

94	 	 12	Modbus	 	

Industrial IT and Automation - Part 2:	Industrial	IT

Register	Addresses:	

0x	=	Coil,	Address	Range:	00001-09999 	

1x	=	Discrete	Input,	Address	Range:	10001-19999 	

3x	=	Input	Register,	Address	Range:	30001-39999 	

4x	=	Holding	Register,	Address	Range:	40001-49999	

When	using	the	extended	referencing,	all	number	references	must	be	exactly	six	digits.	This	avoids	
confusion	between	coils	and	other	entities.	For	example,	to	know	the	difference	between	holding	
register	#40001	and	coil	#40001,	if	coil	#40001	is	the	target,	it	must	appear	as	#040001.	

12.2.1 Access	Levels	

In	SCADA	systems,	it	is	common	for	embedded	devices	to	have	certain	values	defined	as	inputs,	
such	as	gains	or	proportional	integral	derivative	(PID)	settings,	while	other	values	are	outputs,	like	
the	current	temperature	or	valve	position.	To	meet	this	need,	Modbus	data	values	are	divided	into	
four	ranges	

In	many	cases,	sensors	and	other	devices	generate	data	in	types	other	than	simply	Booleans	and	
unsigned	integers.	It	is	common	for	slave	devices	to	convert	these	larger	data	types	into	registers.	
For	example,	a	pressure	sensor	may	split	a	32-bit	floating	point	value	across	two	16-bit	registers.	

See	Figure	12-3	for	the	access	levels	on	the	different	types	in	Modbus.	

	

Figure	12-3:	Access	Levels	

12.3 Modbus	Protocols	
There	are	3	main	types	of	Modbus	Protocols:	

• Modbus	ASCII	

• Modbus	RTU	(Remote	Terminal	Unit)	

95	 	 12	Modbus	 	

Industrial IT and Automation - Part 2:	Industrial	IT

– Modbus	RTU	uses	RS-485	or	RS-232	

• Modbus	TCP/IP	

– Modbus	TCP	uses	Ethernet	

Modbus	ASCII	and	Modbus	RTU	are	simple	serial	protocols	that	use	RS-232	or	RS-485	to	transmit	
data	packets.	

Modbus	TCP/IP	follows	the	OSI	Network	Model	and	can	be	used	in	an	ordinary	Ethernet	network	

12.3.1 Modbus	ASCII	

Modbus	ASCII	uses	ASCII	characters	for	protocol	communication.	

12.3.2 Modbus	RTU	

Modbus	RTU	uses	binary	representation	of	the	data	for	protocol	communication.	 	

Modbus	RTU	uses	RS-485	or	RS-232.	

Modbus	RTU	requires	that	you	know	or	define	baud	rate,	character	format	(8	bits	no	parity,	etc.),	
and	slave	ID	(aka	slave	address,	unit	number,	unit	ID).	A	mismatch	in	any	of	these	will	result	in	no	
communication.	

12.3.3 Modbus	TCP/IP	

Modbus	TCP/IP	follows	the	OSI	Network	Model	and	can	be	used	in	an	ordinary	Ethernet	network.	

Modbus	TCP	requires	that	you	know	or	define	IP	addresses	on	the	network.	

Modbus	TCP/IP	uses	Port	502	

In	Modbus	TCP/IP	we	normally	use	the	terms	Server/Client	instead	of	Slave/Master	

Slave	->	Server	

Master	->	Client	

12.4 Modbus	in	LabVIEW	
3	ways	to	use	Modbus	in	LabVIEW:	

• Use	a	high-level	OPC	Server	

96	 	 12	Modbus	 	

Industrial IT and Automation - Part 2:	Industrial	IT

• Use	Modbus	I/O	Server	

• Use	the	LabVIEW	Modbus	API	

“LabVIEW	Real-Time	Module”	or	“LabVIEW	DSC	Module”	required	

Introduction	to	Modbus	(National	Instruments):	http://www.ni.com/white-paper/7675/en/	 	

12.4.1 LabVIEW	Modbus	API	

Figure	12-4	shows	the	LabVIEW	Modbus	API	palette	in	LabVIEW.	 	

	

Figure	12-4:	LabVIEW	Modbus	API	

LabVIEW	Example:	

We	will	go	through	a	simple	Modbus	example	in	LabVIEW	where	we	create	3	different	
applications.	In	LabVIEW	Application	#1	we	create	a	Modbus	Slave.	LabVIEW	Application	#2	will	be	
a	Modbus	Master	application	where	we	write	data	to	the	slave,	while	LabVIEW	Application	#3	is	a	
Modbus	Master	application	where	we	read	the	same	data	as	Application	#2	is	writing	to	the	slave.	

See	Figure	12-5	for	s	simple	sketch	of	the	LabVIEW	example.	

97	 	 12	Modbus	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	12-5:	LabVIEW	Modbus	Example	Overview	

Figure	12-6	shows	the	Front	Panel	(GUI)	of	the	3	applications	in	the	example.	

	

Figure	12-6:	LabVIEW	Example	–	Front	Panels	

In	LabVIEW	Application	#2	we	can	turn	on/off	some	Boolean	switches	and	when	pushing	the	
“Write”	button	the	values	are	pushed	and	store	in	the	slave	Coil	Register	(LabVIEW	Application	
#1).	In	LabVIEW	Application	#1	we	just	continuously	read	the	values	stored	in	the	Slave	Coil	
Register.	Dark	green	in	Boolean	True	and	light	green	is	Boolean	False.	In	LabVIEW	Application	#2	
we	see	that	we	are	able	to	read	the	values	stored	in	the	Slave	Registers.	

In	this	example,	all	3	applications	running	on	the	same	computer,	while	in	practical	applications	
these	3	applications	will	typically	run	on	3	different	computers	or	devices.	

Modbus	Slave	Block	Diagram	(Figure	12-7):	

98	 	 12	Modbus	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	12-7:	Modbus	Slave	Block	Diagram	

Modbus	Master	Write	Block	Diagram	(Figure	12-8):	

	

Figure	12-8:	Modbus	Master	Write	Block	Diagram	

Modbus	Master	Read	Block	Diagram	(Figure	12-9):	

	

99	 	 12	Modbus	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	12-9:	Modbus	Master	Read	Block	Diagram	

12.4.2 LabVIEW	Modbus	Simulator	

The	LabVIEW	Modbus	Simulator	is	integrated	with	“LabVIEW	Real-Time	Module”	or	“LabVIEW	DSC	
Module”	It	can	be	used	for	test	purpose,	etc.	The	LabVIEW	Modbus	Simulator	is	a	Modbus	Slave	

In	Figure	12-10	we	use	the	LabVIEW	Modbus	Simulator	in	order	to	test	our	LabVIEW	code.	

	

Figure	12-10:	LabVIEW	Modbus	Simulator	

You	will	find	the	LabVIEW	Modbus	Simulator	and	other	Modbus	applications	and	examples	using	
the	“NI	Example	Finder”.	

	

100	

13 Virtualization	

13.1 Introduction	
What	is	Virtualization?	[Wikipedia]	Virtualization,	in	computing,	refers	the	act	of	creating	a	virtual	
(rather	than	actual)	version	of	something,	including	but	not	limited	to	a	virtual	computer	hardware	
platform,	operating	system	(OS),	storage	device,	or	computer	network	resources.	

The	term	"virtualization"	traces	its	roots	to	1960s	mainframes,	during	which	it	was	a	method	of	
logically	dividing	the	mainframes'	resources	for	different	applications.	Since	then,	the	meaning	of	
the	term	has	evolved	to	the	aforementioned.	

Hardware	virtualization	or	platform	virtualization	refers	to	the	creation	of	a	virtual	machine	that	
acts	like	a	real	computer	with	an	operating	system.	Software	executed	on	these	virtual	machines	is	
separated	from	the	underlying	hardware	resources.	For	example,	a	computer	that	is	running	
Microsoft	Windows	may	host	a	virtual	machine	that	looks	like	a	computer	with	the	Ubuntu	Linux	
operating	system;	Ubuntu-based	software	can	be	run	on	the	virtual	machine.	

In	hardware	virtualization,	the	host	machine	is	the	actual	machine	on	which	the	virtualization	
takes	place,	and	the	guest	machine	is	the	virtual	machine.	

The	words	host	and	guest	are	used	to	distinguish	the	software	that	runs	on	the	physical	machine	
from	the	software	that	runs	on	the	virtual	machine.	 	

The	software	or	firmware	that	creates	a	virtual	machine	on	the	host	hardware	is	called	a	
hypervisor	or	Virtual	Machine	Manager.	

A	snapshot	is	the	state	of	a	virtual	machine,	and,	generally,	its	storage	devices,	at	an	exact	point	in	
time.	Snapshots	are	"taken"	by	simply	giving	an	order	to	do	so	at	a	given	time,	and	can	be	
"reverted"	to	on	demand,	with	the	effect	that	the	VM	appears	(ideally)	exactly	as	it	did	when	the	
snapshot	was	taken.	

A	lot	of	Virtualization	Software	exists.	Here	are	some	examples:	

• VMware	Workstation/VMware	Workstation	Player	
• VMware	vSphere	
• Microsoft	Hyper-V	
• VirtualBox	
• VMware	Fusion	
• etc.	

101	 	 13	Virtualization	 	

Industrial IT and Automation - Part 2:	Industrial	IT

These	(and	others)	are	explained	more	in	detailed	later	in	this	document.	

VMware	is	a	company	that	has	been	specializing	within	virtualization	software.	

http://www.vmware.com	 	

13.2 VMware	

13.2.1 VMware	Workstation	Player	

VMware	Workstation	Player	(Figure	13-1)	is	for	personal	use	on	your	own	PC.	VMware	Player	is	
free	of	charge	for	personal	noncommercial	use.	

	

Figure	13-1:	VMware	Workstation	Player	

With	VMware	Workstation	Player,	you	can	only	run	one	Virtual	Machine	at	the	same	time.	

In	Figure	13-2	we	see	Windows	Server	2012	R2	running	within	the	VMware	Workstation	Player.	

102	 	 13	Virtualization	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	13-2:	Windows	Server	running	as	a	Virtual	Machine	

VMware	Workstation	Player	Plus	has	the	same	functionality	as	VMware	Player	but	can	be	used	for	
commercial	use.	 	

Note!	the	free	version	called	VMware	Workstation	Player	was	previously	called	VMware	Player.	

13.2.2 VMware	Workstation	

VMware	Workstation	is	for	personal	(you	typically	install	this	software	on	a	personal	computer,	
not	a	server)	use	and	if	you	need	more	features	than	VMware	Workstation	Player	can	offer.	With	
VMware	Workstation	you	can	add	snapshot,	restore	to	snapshot,	copy	virtual	machines,	etc.	

With	VMware	Workstation,	you	can	run	multiple	Virtual	Machines	at	the	same	time.	

Test	(in	Norwegian):	http://www.idg.no/pcworld/article277809.ece	 	

13.2.3 VMware	vSphere	

VMware	vSphere	is	for	companies	that	uses	virtualization	in	a	large	scale.	

13.3 Microsoft	Hyper-V	
Hyper-V	is	the	virtualization	solution	from	Microsoft.	

We	have	3	different	alternatives:	

103	 	 13	Virtualization	 	

Industrial IT and Automation - Part 2:	Industrial	IT

• Windows	Server	with	Hyper-V	
• Hyper-V	Server	
• Windows	Client	Hyper-V	

13.3.1 Windows	Server	with	Hyper-V	

Here	you	need	“Windows	Server	2013	R2	Standard”	or	“Windows	Server	2012	R2	Datacenter”	as	
the	host	operating	system.	

Both	editions	(Standard	and	Datacenter)	have	the	exact	same	functionality.	The	only	difference	
between	the	two	editions	is	the	virtualization	rights.	Windows	Server	2012	Standard	edition	gives	
the	purchaser	the	rights	to	run	2	virtual	instances	of	Windows	Server,	while	the	Datacenter	Edition	
has	unlimited	virtualization	rights.	

13.3.2 Hyper-V	Server	

Hyper-V	Server	is	a	separate	standalone	product	that	is	a	free	download.	Hyper-V	Server	is	a	
Hypervisor-based,	meaning	you	don’t	need	to	install	it	on	top	of	an	existing	Windows	Server.	

Hyper-V	Server	only	installs	the	Core	Server	features	needed	to	run	virtualization,	you	cannot	
other	Roles	like	Active	Directory,	etc.	and	you	don’t	have	a	graphical	interface.	The	normal	way	is	
to	is	use	Windows	8	and	the	Hyper-V	Manager	to	manage	the	VMs	remotely	(create	new	VM,	edit	
VMs,	etc.).	

The	latest	version	is	“Microsoft	Hyper-V	Server	2012	R2”.	 	

13.3.3 Windows	Client	Hyper-V	

In	Windows	10	you	can	install	the	“Client	Hyper-V”	feature	meaning	you	can	run	VMs	inside	
Windows.	

Step	1:	Check	if	your	PC	are	able	to	run	Client	Hyper-V	

Check	System	Information	(msinfo32.exe)	to	see	if	your	PC	is	capable	to	run	Windows	Client	
Hyper-V	(Figure	13-3):	

104	 	 13	Virtualization	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	13-3:	Hyper-V	Requirements	

All	these	settings	need	to	be	Yes.	In	general,	if	either	the	“Virtualization	Enabled	in	Firmware”	or	
the	“VM	Monitor	Mode	Extensions”	are	set	to	No,	you	can	enable	those	features	in	the	firmware.	
However,	if	the	“Second	Level	Address	Translation	Extensions”	or	the	“Data	Execution	Protection”	
settings	are	set	to	No,	then	you	will	not	be	able	to	use	Windows	8	Client	Hyper-V.	

Step	2:	Install	Client	Hyper-V	

If	your	PC	is	able	to	run	Client	Hyper-V	you	need	to	add	the	Hyper-V	feature	in	Windows	(Figure	
13-4).	

105	 	 13	Virtualization	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	13-4:	Hyper-V	Installation	Components	

Then	you	can	start	up	the	Hyper-V	Manager	and	start	creating	your	VMs.	

13.4 VirtualBox	
VirtualBox	is	originally	created	by	Sun	Microsystems,	but	is	now	maintained	by	Oracle.	

VirtualBox	is	freely	available	as	Open	Source	Software.	

Web	site:	https://www.virtualbox.org	

VirtualBox	is	available	for	Windows,	Mac	OS	X	and	Linux/UNIX.	

13.5 Mac	and	OS	X	
If	you	have	a	Mac	and	want	to	run	Windows	or	other	OS,	you	have	different	options	here	as	well.	

• Boot	Camp	
• VMware	Fusion	
• Parallels	Desktop	
• VirtualBox	

13.5.1 Boot	Camp	

106	 	 13	Virtualization	 	

Industrial IT and Automation - Part 2:	Industrial	IT

Boot	Camp	is	built	into	the	Mac	OS	X.	It	is	actually	not	a	virtualization	technique,	but	rather	a	
method	to	run	Windows	on	a	Mac	computer.	

13.5.2 VMware	Fusion	

Web	Site:	

http://www.vmware.com/products/fusion/overview.html	 	

Example	(Figure	13-5):	

	

Figure	13-5:	VMware	Fusion	on	Mac	OS	X	

13.5.3 Parallels	Desktop	

It	costs	about	$80.	You	can	buy	and	download	from	the	vendor’s	web	site:	

http://www.parallels.com/products/desktop/	 	

13.5.4 VirtualBox	

VirtualBox	is	originally	created	by	Sun	Microsystems,	but	is	now	maintained	by	Oracle.	

VirtualBox	is	freely	available	as	Open	Source	Software.	

Web	site:	https://www.virtualbox.org	

107	 	 13	Virtualization	 	

Industrial IT and Automation - Part 2:	Industrial	IT

VirtualBox	is	available	for	Windows,	Mac	OS	X	and	Linux/UNIX.	

	

	

	

	

	

108	

14 Cloud	Computing	
Web:	https://www.halvorsen.blog/documents/technology/cloud/	 	

Cloud	computing,	also	known	as	on-demand	computing,	is	a	kind	of	internet-based	computing,	
where	shared	resources	and	information	are	provided	to	computers	and	other	devices	on-demand	
(Wikipedia).	

Figure	14-1	is	showing	overview	of	cloud	computing,	with	typical	types	of	applications	supported	
by	that	computing	model.	

	

Figure	14-1:	Cloud	Computing	(https://en.wikipedia.org/wiki/Cloud_computing,	Sam	Johnston)	

Microsoft,	Amazon	and	Google	are	3	big	players	in	this	market	with	their	respective	products:	 	

109	 	 14	Cloud	Computing	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

• Windows	Azure	 	
• Amazon	Web	Services	
• Google	Cloud	Platform	

Cloud	Computing	provides	a	simple	way	to	access	servers,	storage,	databases	and	a	broad	set	of	
application	services	over	the	Internet.	Cloud	Computing	providers	such	as	Microsoft,	Amazon,	
Google,	etc.	own	and	maintain	the	network-connected	hardware	required	for	these	application	
services,	while	you	provision	and	use	what	you	need	via	a	web	application.	

14.1 Microsoft	Azure	
Microsoft	Azure	is	the	cloud	computing	solution	from	Microsoft,	you	could	say	it	is	“Windows	in	
the	Cloud”	with	no	local	hardware/software	installations,	i.e.	there	is	no	need	for	local	servers.	

Cloud	Features:	

• Web	Sites	
• SQL	Servers	
• Virtual	Machines	
• etc.	

The	product	is	based	on	monthly	payments	(1-month	free	trial)	

Windows	Azure	is	available	from	here:	

https://azure.microsoft.com	

14.2 Amazon	Web	Services	
Amazon	Web	Services	(AWS)	is	another	cloud	service	from	Amazon.	

	

Cloud	Features:	

• Web	sites	
• SQL	Servers	
• Virtual	Machines	

110	 	 14	Cloud	Computing	 	

Industrial IT and Automation - Part 2:	Industrial	IT

• etc.	

Amazon	Web	Services	(AWS)	is	available	from	here:	

http://aws.amazon.com	

“AWS	Free	Usage	Tier”	(available	for	12	months):	

http://aws.amazon.com/free	

14.3 Google	Cloud	Platform	
Google	Cloud	Platform	is	a	cloud	computing	platform	by	Google	that	offers	hosting	on	the	same	
supporting	infrastructure	that	Google	uses	internally	for	end-user	products	like	Google	Search	and	
YouTube.	Cloud	Platform	provides	developer	products	to	build	a	range	of	programs	from	simple	
websites	to	complex	applications.	https://en.wikipedia.org/wiki/Google_Cloud_Platform	 	

Google	Cloud	Platform	is	available	from	here:	

https://cloud.google.com	

	

	

	

111	

15 Wireless	Systems	
It's	not	just	phones	and	computers	that	can	communicate	wirelessly	with	the	outside	world.	
Wireless	sensors	appear	both	in	medicine,	in	buildings	and	especially	in	industrial	applications.	

Wireless	technology	and	wireless	networks	are	widely	used	today,	but	it’s	still	quite	new	in	
industrial	automation	systems.	

	

Figure	15-1:	Wireless	DAQ	System	

Here	are	some	examples	of	Wireless	Technologies:	

• Cellular	

• Bluetooth	

• ZigBee	(IEEE	802.15.4)	

• Wireless	USB	

• Wi-Fi	(IEEE	802.11)	

• WirelessHART	

ZigBee	and	WirelessHART	are	popular	in	industrial	applications,	while	Wi-Fi,	Bluetooth	and	Cellular	
are	more	popular	in	consumer	products	like	Smartphones,	computers,	etc.	

For	more	information	about	Wireless	DAQ	Systems,	please	read	the	Tutorial	“Wireless	Data	
Acquisition	in	LabVIEW”.	

	 112	 	 15	Wireless	Systems	 	

Industrial IT and Automation - Part 2:	Industrial	IT

	

Figure	15-2:	Overview	of	Wireless	Standards	

15.1 ZigBee	
ZigBee	(IEEE	802.15.4)	is	a	low-cost,	low-power,	wireless	mesh	networking	proprietary	standard.	
The	low	cost	allows	the	technology	to	be	widely	deployed	in	wireless	control	and	monitoring	
applications,	the	low	power-usage	allows	longer	life	with	smaller	batteries.	

Read	more	about	ZigBee:	

ZigBee	Alliance:	http://www.zigbee.org/	

Wikipedia:	http://en.wikipedia.org/wiki/ZigBee	

15.2 WirelessHART	
WirelessHART	is	an	open-standard	wireless	networking	technology	developed	by	HART	
Communication	Foundation.	It	was	developed	as	a	multi-vendor,	interoperable	wireless	standard.	

Read	more	about	WirelessHART:	

HART	Communication	Foundation:	http://www.hartcomm.org/	 	

Wikipedia:	http://en.wikipedia.org/wiki/WirelessHART	

	

	

113	

16 Vision	Systems	
Vision	systems	are	important	in	the	industry	(and	in	other	areas)	today.	Figure	16-1	shows	a	
simple	vision	system	where	a	vision	system	is	used	to	remove	bad	items.	

	

Figure	16-1:	Simple	Vision	System	

16.1 Vision	Systems	in	LabVIEW	
With	LabVIEW,	you	can	create	advanced	vision	systems.	You	need	the	following	software:	

• LabVIEW	
• NI	Vision	Acquisition	Software	
• NI	Vision	Development	Module	

The	NI	Vision	Acquisition	software	is	the	basic	software	you	need	if	you	want	to	create	Vision	
applications	for	LabVIEW	or	the	.NET	platform.	The	NI	Vision	Acquisition	software	includes	the	
necessary	drivers,	such	as	NI-IMAQ	and	NI-IMAQdx.	

The	NI-IMAQdx	driver	software	gives	you	the	ability	to	acquire	images	with	IEEE	1394	(FireWire),	
GigE	Vision	(Ethernet),	and	USB	cameras.	

114	 	 16	Vision	Systems	

Industrial IT and Automation - Part 2:	Industrial	IT

For	more	advanced	machine	vision	and	image	processing	you	will	need	the	Vision	Development	
Module.	The	Vision	Development	Module	contains	hundreds	of	image-processing	and	machine	
vision	functions,	both	for	LabVIEW	and	the	.NET	platform.	

This	package	includes	built-in	functions	for:	

• Pattern	matching	
• Texture	recognition	 	
• Counting	and	Classification	
• OCR	(Optical	Character	Recognition)	
• Bar	Code	readers	
• Image	Filters	
• etc.	

Figure	16-2	shows	the	LabVIEW	Vision	palette.	

	

Figure	16-2:	LabVIEW	Vision	Palette	

16.2 Vision	Systems	in	Visual	Studio/C#	
The	NI	Vision	Acquisition	software	is	the	basic	software	you	need	if	you	want	to	create	Vision	
applications	for	LabVIEW	or	the	.NET	platform.	The	NI	Vision	Acquisition	software	includes	the	
necessary	drivers,	such	as	NI-IMAQ	and	NI-IMAQdx.	

The	NI-IMAQdx	driver	software	gives	you	the	ability	to	acquire	images	with	IEEE	1394	(FireWire),	
GigE	Vision	(Ethernet),	and	USB	cameras.	

	 	

	

	

115	

Part	3 :	Automation	
In	this	part	we	give	an	overview	of	DAQ	systems,	control	systems,	sensors	and	actuators,	OPC,	
SCADA	systems,	Hardware-in-the-Loop	simulations,	etc.	

	

	

	

	

	

116	

17 DAQ	Systems	
Web:	https://www.halvorsen.blog/documents/technology/daq/	 	

DAQ	is	short	for	Data	Acquisition.	The	purpose	of	data	acquisition	is	to	measure	an	electrical	or	
physical	phenomenon	such	as	voltage,	current,	temperature,	pressure,	or	sound.	PC-based	data	
acquisition	uses	a	combination	of	modular	hardware,	application	software,	and	a	computer	to	
take	measurements.	While	each	data	acquisition	system	is	defined	by	its	application	requirements,	
every	system	shares	a	common	goal	of	acquiring,	analyzing,	and	presenting	information.	Data	
acquisition	systems	incorporate	signals,	sensors,	actuators,	signal	conditioning,	data	acquisition	
devices,	and	application	software.	 	

So	summing	up,	Data	Acquisition	is	the	process	of:	

• Acquiring	signals	from	real-world	phenomena	
• Digitizing	the	signals	
• Analyzing,	presenting	and	saving	the	data	

The	DAQ	system	has	the	following	parts	involved,	see	Figure	17-1.	

	

Figure	17-1:	DAQ	System	

The	parts	in	a	typical	DAQ	system	are	as	follows:	

• Physical	input/output	signals	
• DAQ	device/hardware	
• Driver	software	
• Your	software	application	(Application	software)	

117	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

17.1 Sampling	
Discrete	sampling	of	a	continuous	signal:	

	

Figure	17-2:	Continuous	vs.	Discrete	Signals	

	

118	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	17-3:	Aliasing	

17.1.1 AD	Converters	

All	Analog	Signals	needs	to	be	converted	to	Digital	Signals	before	the	Computer	can	use	them	(AD	
Converter).	

	

Figure	17-4:	Analog	to	Digital	Converter	

AD	–	Analog	to	Digital	 	

DA	–	Digital	to	Analog	

What	is	an	Analog-to-Digital	Converter	(ADC)?	

119	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

Analog	signals	from	sensors	must	be	converted	into	digital	before	they	are	manipulated	by	digital	
equipment	such	as	a	computer.	An	ADC	is	a	chip	that	provides	a	digital	representation	of	an	analog	
signal	at	an	instant	in	time.	In	practice,	analog	signals	continuously	vary	over	time	and	an	ADC	
takes	periodic	“samples”	of	the	signal	at	a	predefined	rate.	These	samples	are	transferred	to	a	
computer	over	a	computer	bus	where	the	original	signal	is	reconstructed	from	the	samples	in	
software.	

17.2 DAQ	Hardware	
What	Is	a	DAQ	Device?	

DAQ	hardware	acts	as	the	interface	between	a	computer	and	signals	from	the	outside	world.	It	
primarily	functions	as	a	device	that	digitizes	incoming	analog	signals	so	that	a	computer	can	
interpret	them.	The	three	key	components	of	a	DAQ	device	used	for	measuring	a	signal	are	the	
signal	conditioning	circuitry,	analog-to-digital	converter	(ADC),	and	computer	bus.	

In	this	document,	we	will	use	different	hardware	available	from	National	Instruments	in	our	
examples,	these	devices	are:	

• TC-01	Thermocouple	device	
• USB-6008	DAQ	Device	

17.2.1 NI	USB	TC-01	Thermocouple	Device	

In	Figure	17-5	we	see	the	NI	USB-TC01	Thermocouple	Measurement	device.	

	

	

Figure	17-5:	TC-01	Thermocouple	Device	

120	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

We	will	give	code	examples	of	how	to	use	this	device	in	C#.	Since	this	is	a	DAQmx	supported	
device	from	National	Instruments,	the	programing	structure	will	be	the	same	as	for	NI	USB-6008.	 	

17.2.2 NI	USB-6008	DAQ	Device	

NI	USB-6008	(see	Figure	17-6)	is	a	simple	and	low-cost	multifunction	I/O	device	from	National	
Instruments.	

	

Figure	17-6:	USB-6008	I/O	Module	

The	device	has	the	following	specifications:	

• 8	analog	inputs	(12-bit,	10	kS/s)	
• 2	analog	outputs	(12-bit,	150	S/s)	
• 12	digital	I/O	
• USB	connection,	no	extra	power-supply	needed	
• Compatible	with	LabVIEW	and	Visual	Studio/C#	
• NI-DAQmx	driver	software	 	

The	NI	USB-6008	is	well	suited	for	education	purposes	due	to	its	small	size	and	easy	USB	
connection.	

With	NI	USB-6008	(or	similar	DAQ	devices)	you	can	connect	all	kinds	of	sensors,	as	long	as	it	is	a	
analog	voltage	signal.	See	Figure	17-7.	

121	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	17-7:	Pt-100	Measurements	

17.3 NI	DAQmx	driver	
National	Instruments	provides	a	native	.NET	API	for	NI-DAQmx.	This	is	available	as	a	part	of	the	NI-
DAQmx	driver	and	does	not	require	Measurement	Studio.	

Note!	In	order	to	install	the	DAQmx	API	for	C#,	make	sure	to	select	“.NET	Support”	when	installing	
the	DAQmx	driver.	

This	application	uses	the	C#	API	included	in	the	NI	DAQmx	driver,	so	make	sure	that	you	have	
installed	the	NI	DAQmx	driver	in	advance.	

During	the	installation	make	sure	to	select	“Custom”:	

122	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Next,	make	sure	that	you	select	.NET	Framework	X.x	Support	for	the	version	of	.NET	that	your	
version	of	Visual	Studio	id	using:	

	

123	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

17.3.1 NI	MAX	

Measurement	&	Automation	Explorer	(MAX)	provides	access	to	your	National	Instruments	devices	
and	systems.	

With	MAX,	you	can:	

• Configure	your	National	Instruments	hardware	and	software	 	
• Create	and	edit	channels,	tasks,	interfaces,	scales,	and	virtual	instruments	 	
• Execute	system	diagnostics	 	
• View	devices	and	instruments	connected	to	your	system	 	
• Update	your	National	Instruments	software	 	

In	addition	to	the	standard	tools,	MAX	can	expose	item-specific	tools	you	can	use	to	configure,	
diagnose,	or	test	your	system,	depending	on	which	NI	products	you	install.	As	you	navigate	
through	MAX,	the	contents	of	the	application	menu	and	toolbar	change	to	reflect	these	new	tools.	

	

Figure	17-8:	Measurement	and	Automation	Explorer	(MAX)	

17.4 Measurement	Studio	
C#	is	a	powerful	programming	language,	but	has	few	built-in	features	for	measurement	and	
control	applications.	Measurement	Studio	is	an	add-on	to	Visual	Studio	which	makes	it	easier	to	

124	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

create	such	applications.	With	Measurement	Studio,	we	can	implement	Data	Acquisition	and	a	
graphical	HMI.	

17.5 DAQ	with	LabVIEW	
After	we	have	installed	the	DAQmx	driver,	we	can	easily	use	NI	DAQ	devices	in	LabVIEW.	Figure	
17-9	shows	the	DAQmx	palette	in	LabVIEW.	You	find	the	palette	in	the	Functions	Palette:	
“Measurement	I/O”	->	“NI	DAQmx”.	

	

Figure	17-9:	DAQmx	Palette	in	LabVIEW	

For	basic	DAQ	we	use	the	DAQ	Assistant,	for	more	“advanced”	DAQ	we	use	the	Start/Stop	and	
Read/Write	functions.	

When	you	place	the	DAQ	Assistant	(see	Figure	17-10)	on	the	Block	Diagram,	a	Wizard	
automatically	pops	up	where	you	configure	what	you	want	to	do,	i.e.,	if	you	want	to	Read	or	Write	
Data,	Analog	or	Digital	signals,	which	channel	you	want	to	use,	etc.	

125	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	17-10:	LabVIEW	DAQ	Assistant	

The	following	steps	needs	to	be	taken	in	the	DAQ	Assistant	(Figure	17-11):	

	

Figure	17-11:	LabVIEW	DAQ	Assistant	–	Step	by	step	

126	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

Figure	17-12	shows	a	simple	DAQ	Application	in	LabVIEW.	

	

Figure	17-12:	Simple	DAQ	Example	in	LabVIEW	

17.5.1 Write	to	DAQ	

In	addition	to	read	from	the	DAQ	device	we	can	also	write	to	the	DAQ	device.	See	Figure	17-13	

	

Figure	17-13:	Write	to	DAQ	(Analog	Out)	Example	

Figure	17-14	shows	the	settings	in	the	DAQ	Assistant	for	Analog	Out.	

127	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	17-14:	DAQ	Assistant	Settings	for	Analog	Out	

17.6 Datalogging	
Figure	17-15	shows	a	simple	Datalogging	example	implemented	in	LabVIEW.	In	this	example	we	
log	data	from	a	sensor	and	presenting	the	data	into	a	chart.	The	application	also	saves	the	data	to	
a	file.	

	

Figure	17-15:	Simple	Datalogging	Example	

Figure	17-16	shows	the	Front	Panel	(GUI/HMI)	for	the	logging	application.	 	

128	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	17-16:	The	GUI	for	the	logging	Application,	including	the	Data	stored	on	File	

Saving	the	data	to	a	so-called	Measurement	File	in	LabVIEW	is	very	easy.	You	just	use	the	“Write	
To	Measurement	File”	

	

129	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	17-17:	The	File	I/O	palette	in	LabVIEW	

	

Figure	17-18:	Configuration	of	the	Log	File	Format	

17.6.1 Measurement	Filter/Low-pass	Filter	

The	transfer	function	for	a	first-order	low-pass	filter	may	be	written:	

130	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
1

𝑇*𝑠 + 1
	

Where	 𝑇*	 is	the	time-constant	of	the	filter,	 𝑢(𝑠)	 is	the	filter	input	and	 𝑦 𝑠 	 is	the	filter	output.	

Discrete	version:	

It	can	be	shown	that	a	discrete	version	can	be	stated	as:	

𝑦, = 1 − 𝑎 𝑦,/0 + 𝑎𝑢,	

Where	

𝑎 =
𝑇1

𝑇* + 𝑇1
	

Where	 𝑇1	 is	the	Sampling	Time.	

It	is	a	golden	rule	that	 𝑇1 ≪ 𝑇*	 and	in	practice	we	should	use	the	following	rule:	

𝑇1 ≤
𝑇*
5
	

17.6.2 LabVIEW	Example	

There	are	many	ways	to	implement	a	Low-pass	filter	in	LabVIEW.	In	this	example,	we	will	use	the	
Formula	Node	in	order	to	implement	it	from	scratch.	

Figure	17-19	shows	the	Front	Panel	with	inputs	and	outputs	for	the	Low-pass	Filter	we	are	going	to	
create	in	LabVIEW.	

	

Figure	17-19:	Low-pass	Filter	Front	Panel	

131	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

Figure	17-20	show	the	code	for	the	Low-pass	Filter	implemented	in	LabVIEW.	

	

Figure	17-20:	Low-pass	Filter	implemented	in	LabVIEW	

Testing	the	Filter:	

In	this	example	(see	Figure	17-21)	we	add	noise	to	a	Sine	function.	We	then	use	the	Measurement	
Filter	to	see	if	we	can	remove	the	noise	afterwards.	

	

Figure	17-21:	Testing	the	Low-pass	Filter	to	make	sure	it	works	

132	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

As	you	can	see	this	gives	good	results.	The	filter	removes	the	noise	from	the	signal.	 	

We	can	also	use	the	built-in	“Filter”	function	in	LabVIEW	

	

You	find	the	“Filter”	function	in	the	Functions	palette:	Express	->	Signal	Analysis	->	Filter.	

This	function	is	more	flexible,	since	you	can	configure	it.	

	

Figure	17-22:	Built-in	Filter	in	LabVIEW	

Figure	17-23	shows	a	LabVIEW	example	using	the	built-in	function	in	LabVIEW.	In	this	example,	we	
just	simulate	a	signal	with	noise,	and	then	we	use	the	Filter	function	to	see	if	we	are	able	to	
remove	the	noise.	

133	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	17-23:	LabVIEW	Example	using	the	built-in	Filter	function	

Figure	17-24	we	see	the	Front	Panel,	where	we	have	one	chart	showing	the	signal	with	noise	and	
in	the	other	chart	we	have	used	the	Filter	function	in	order	to	remove	the	noise.	

	

Figure	17-24:	Front	Panel,	Example	using	the	built-in	Filter	in	LabVIEW	

17.6.3 C#	Example	

	

134	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

17.7 Industrial	DAQ	Systems	
A	lot	of	Industrial	DAQ	systems	exists	today.	A	short	introduction	to	some	of	them	will	be	given	
here.	

The	following	industrial	DAQ	systems	are	explained	below.	

• cDAQ	(CompactDAQ)	
• cRIO	(CompactRIO)	

Both	these	systems	are	from	National	Instruments.	

17.7.1 cDAQ	

cDAQ	(CompactDAQ)	(Figure	17-25)	from	National	Instruments	is	a	DAQ	system	where	you	can	
plug	in	different	I/O	modules,	from	1	up	to	8	depending	on	the	hardware.	

	

Figure	17-25:	cDAQ	System	from	National	Instruments	

You	connect	the	cDAQ	using	a	standard	USB	cable	(or	Ethernet/WiFi	for	some	of	the	
configurations).	You	can	program	the	device	in	LabVIEW	or	Visual	Studio/C#	using	the	DAQmx	
driver.	

For	more	information	about	cDAQ,	see	the	following	web	sites:	

https://en.wikipedia.org/wiki/CompactDAQ	

http://www.ni.com/compactdaq	

17.7.2 cRIO	

135	 	 17	DAQ	Systems	 	

Industrial IT and Automation - Part 3:	Automation

cRIO	(CompactRIO)	(Figure	17-26)	from	National	Instruments	is	similar	to	cDAQ,	but	the	main	
difference	is	that	you	program	it	on	your	PC	and	then	you	deploy	the	program	to	the	device	so	it	
can	run	independently	from	the	PC,	a	so-called	embedded	system.	

	

Figure	17-26:	cRIO	System	from	National	Instruments	

You	need	to	install	the	“LabVIEW	Real-Time	Module”	and	the	“NI	RIO	Driver”	in	order	to	use	it	
within	LabVIEW.	

For	more	information	about	cRIO,	see	the	following	web	sites:	

https://en.wikipedia.org/wiki/CompactRIO	

http://www.ni.com/compactrio/	

A	small-scale	version	of	cRIO	is	called	myRIO	which	is	for	more	personal,	non-industrial	use.	

http://www.ni.com/myrio	

	

For	more	information	about	industrial	DAQ	systems	and	real-time	systems,	see	the	Tutorial	“OPC	
and	Real-Time	Systems	in	LabVIEW”.	 	

	

	

136	

18 User	Experience	
HMI	(Human	Machine	Interface),	GUI	(Graphical	user	Interface),	MMI	(Man-Machine	Interface),	
UX	(User	eXperience)	or	User	Interface	Design	are	all	about	creating	the	best	experience	for	the	
user	of	a	given	system.	

Some	references	for	further	reading:	

https://en.wikipedia.org/wiki/User_interface	

https://en.wikipedia.org/wiki/Graphical_user_interface	

The	GUI/HMI	is	the	only	thing	the	end	user	sees.	The	user	does	not	see	the	code	and	all	the	other	
things	you	have	created.	

	

“Design	is	not	just	what	it	looks	like	and	feels	like.	Design	is	how	it	works!”,	Steve	Jobs	

“Good	design	is	obvious.	Great	design	is	transparent”,	Joe	Sparano,	graphic	designer	

“Math	is	easy	-	design	is	hard”,	Unknown.	

	

	 	

	

	

137	

19 Control	Systems	
Figure	19-1	shows	a	typical	control	system.	

	

Figure	19-1:	Control	System	

While	the	real	process	is	continuous,	normally	the	Controller	and	the	Filter	is	implemented	in	a	
computer.	

19.1 PC-based	Control	System	

	

Figure	19-2:	Industrial	PID	Controller	vs.	PC-based	Control	System	

Figure	19-3	shows	an	example	of	PC-based	Control	System.	

138	 	 19	Control	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	19-3:	Example	of	PC-based	Control	System	

	

19.2 PID	Control	
A	PID	controller	may	be	written:	

	

A	PI	controller	may	be	written:	

139	 	 19	Control	Systems	 	

Industrial IT and Automation - Part 3:	Automation

𝑢 𝑡 = 𝑢6 + 𝐾8𝑒 𝑡 +
𝐾8
𝑇:

𝑒𝑑𝜏
=

6
	

Where	 𝑢	 is	the	controller	output	and	 𝑒	is	the	control	error:	

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)	

Laplace:	

𝑢 𝑠 = 𝐾8𝑒 𝑠 +
𝐾8
𝑇:𝑠

𝑒 𝑠 	

Discrete	version:	

We	start	with:	

𝑢 𝑡 = 𝑢6 + 𝐾8𝑒 𝑡 +
𝐾8
𝑇:

𝑒𝑑𝜏
=

6
	

In	order	to	make	a	discrete	version	using,	e.g.,	Euler,	we	can	derive	both	sides	of	the	equation:	

𝑢 = 𝑢6 + 𝐾8𝑒 +
𝐾8
𝑇:
𝑒	

If	we	use	Euler	Forward	we	get:	

𝑢, − 𝑢,/0
𝑇1

=
𝑢6,, − 𝑢6,,/0

𝑇1
+ 𝐾8

𝑒, − 𝑒,/0
𝑇1

+
𝐾8
𝑇:
𝑒,	

Then	we	get:	

𝑢, = 𝑢,/0 + 𝑢6,, − 𝑢6,,/0 + 𝐾8 𝑒, − 𝑒,/0 +
𝐾8
𝑇:
𝑇1𝑒, 	

Where	

𝑒, = 𝑟, − 𝑦,	

We	can	also	split	the	equation	above	in	2	different	pars	by	setting:	

∆𝑢, = 𝑢, − 𝑢,/0	

This	gives	the	following	PI	control	algorithm:	

𝑒, = 𝑟, − 𝑦,	

∆𝑢, = 𝑢6,, − 𝑢6,,/0 + 𝐾8 𝑒, − 𝑒,/0 +
𝐾8
𝑇:
𝑇1𝑒,	

𝑢, = 𝑢,/0 + ∆𝑢,	

140	 	 19	Control	Systems	 	

Industrial IT and Automation - Part 3:	Automation

This	algorithm	can	easily	be	implemented	in	any	programming	language.	

19.2.1 PI	Controller	as	a	State-space	model	

Given:	

𝑢 𝑠 = 𝐾8𝑒 𝑠 +
𝐾8
𝑇:𝑠

𝑒 𝑠 	

We	set	 𝑧 = 0
1
𝑒 ⇒ 𝑠𝑧 = 𝑒 ⇒ 𝑧 = 𝑒	

This	gives:	

𝑧 = 𝑒	

𝑢 = 𝐾8𝑒 +
𝐾8
𝑇:
𝑧	

Where	

𝑒 = 𝑟 − 𝑦	

Discrete	version:	

Using	Euler:	

𝑧 ≈
𝑧,E0 − 𝑧,

𝑇1
	

Where	 𝑇1	 is	the	Sampling	Time.	

This	gives:	

𝑧,E0 − 𝑧,
𝑇1

= 𝑒,	

𝑢, = 𝐾8𝑒, +
𝐾8
𝑇:
𝑧,	

Finally:	

𝑒, = 𝑟, − 𝑦,	

𝑢, = 𝐾8𝑒, +
𝐾8
𝑇:
𝑧,	

𝑧,E0 = 𝑧, + 𝑇1𝑒,	

This	algorithm	can	easily	be	implemented	in	any	programming	language.	

141	 	 19	Control	Systems	 	

Industrial IT and Automation - Part 3:	Automation

19.3 Industrial	Control	Systems	
Typically,	we	have	3	different	types	of	Industrial	Control	Systems	(ICS),	which	are	(see	also	Figure	
19-4):	

• DCS	–	Distributed	Control	Systems	
• PLC	–	Programmable	Logic	Controller	
• SCADA	–	Supervisory	Control	and	Data	Logging	

	

Figure	19-4:	Different	Types	of	Industrial	Control	Systems	

Figure	19-5	shows	some	examples	of	different	types	of	Industrial	Control	Systems.	

142	 	 19	Control	Systems	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	19-5:	Examples	of	Industrial	Control	Systems	

	

	

143	

20 Sensors	and	Actuators	
A	Sensor	is	a	converter	that	measures	a	physical	quantity	and	converts	it	into	a	signal	which	can	be	
read	by	an	observer	or	by	an	(today	mostly	electronic)	instrument.	

http://en.wikipedia.org/wiki/Sensor	 	

An	Actuator	is	a	type	of	motor	for	moving	or	controlling	a	mechanism	or	system.	It	is	operated	by	
a	source	of	energy,	typically	electric	current,	hydraulic	fluid	pressure,	or	pneumatic	pressure,	and	
converts	that	energy	into	motion.	An	actuator	is	the	mechanism	by	which	a	control	system	acts	
upon	an	environment.	

http://en.wikipedia.org/wiki/Actuator	

In	a	control	system	we	need	to	read	values	from	one	or	more	sensors,	then	the	controller	
calculates	the	control	value	based	on	the	difference	between	the	measured	values	and	the	set-
point(s),	then	the	control	signal(s)	are	use	to	control	the	actuators,	e.g.	a	pump	or	a	motor.	

	

Figure	20-1:	A	Control	System	with	Sensors	and	Actuators	

20.1 Sensors	
What	Is	a	Sensor?	The	measurement	of	a	physical	phenomenon,	such	as	the	temperature	of	a	
room,	the	intensity	of	a	light	source,	or	the	force	applied	to	an	object,	begins	with	a	sensor.	A	
sensor,	also	called	a	transducer,	converts	a	physical	phenomenon	into	a	measurable	electrical	
signal.	Depending	on	the	type	of	sensor,	its	electrical	output	can	be	a	voltage,	current,	resistance,	
or	another	electrical	attribute	that	varies	over	time.	Some	sensors	may	require	additional	

144	 	 20	Sensors	and	Actuators	 	

Industrial IT and Automation - Part 3:	Automation

components	and	circuitry	to	properly	produce	a	signal	that	can	accurately	and	safely	be	read	by	a	
DAQ	device.	See	Figure	20-2.	

	

Figure	20-2:	Acquire	Sensor	Data	

Figure	20-3	shows	different	types	of	sensors.	

	

Figure	20-3:	Different	Types	of	Sensors	

For	more	information,	please	see	the	following	links:	

What	is	Data	Acquisition?	http://www.ni.com/data-acquisition/what-is/	 	

Measurement	Fundamentals:	http://www.ni.com/white-paper/4523/en/	 	

Sensor	Fundamentals:	http://www.ni.com/white-paper/4045/en/	 	

Sensor	Terminology:	http://www.ni.com/white-paper/14860/en/	

Here	are	some	important	aspects	regarding	sensors	and	measurements:	

Calibration:	 	 A	comparison	between	measurements.	One	of	known	magnitude	or	correctness	
made	or	set	with	one	device	and	another	measurement	made	in	as	similar	a	way	as	possible	with	a	

145	 	 20	Sensors	and	Actuators	 	

Industrial IT and Automation - Part 3:	Automation

second	device.	The	device	with	the	known	or	assigned	correctness	is	called	the	standard.	The	
second	device	is	the	unit	under	test,	test	instrument,	or	any	of	several	other	names	for	the	device	
being	calibrated.	

Resolution:	The	smallest	change	it	can	detect	in	the	quantity	that	it	is	measuring.	The	following	
formula	may	be	used	(where	S	is	the	measurement	span,	e.g.,	0-100deg.C):	

	

Accuracy:	How	close	the	measured	value	is	the	actual/real	value,	e.g.,	±0.1	%	

	

Figure	20-4:	Measurement	Properties	

Figure	20-5	illustrates	the	difference	between	accuracy	and	precision.	

	

Figure	20-5:	Accuracy	and	Precision	within	Measurements	

20.1.1 Pt-100	

146	 	 20	Sensors	and	Actuators	 	

Industrial IT and Automation - Part 3:	Automation

Figure	20-6	shows	a	Pt-100	sensor	with	transmitter	and	wiring.	This	mounting	makes	it	possible	to	
connect	it	directly	to	a	0-5	DAQ	device.	

	

Figure	20-6:	Pt-100	Measurements	

Figure	20-7	shows	a	3-wire	Pt-100	sensor,	which	we	use	in	this	example.	

	

Figure	20-7:	Pt-100	with	3-wire	

	

Pt-100

147	 	 20	Sensors	and	Actuators	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	20-8:	Pt-100	Wiring	Schema	

Figure	20-9	shows	the	Transmitter	used	in	this	example.	The	transmitter	is	bought	from	
Elfa/Distrelec.	A	link	to	the	transmitter	is	found	below:	

http://www.distrelec.biz/en/temperature-signal-converter-jumo-00394779/p/17689574	 	

	

Figure	20-9:	Transmitter/Transducer	

The	transmitter	(or	transducer)	is	a	temperature	signal	converter	that	outputs	a	 4 − 20𝑚𝐴	
signal,	which	is	equivalent	to	a	temperature	measurement	range	of	 0 − 100℃.	

148	 	 20	Sensors	and	Actuators	 	

Industrial IT and Automation - Part 3:	Automation

We	want	the	output	to	be	a	voltage	signal	so	we	can	use	it	together	with	a	DAQ	device	(e.g.,	a	NI	
USB-6008	DAQ	device	as	shown	in	Figure	20-10)	that	need	a	input	signal	between	 0 − 5𝑉	 as	
input.	

	

Figure	20-10:	NI	USB-6008	I/O	Module	

This	means	that	we	first	need	to	convert	the	current	signal	to	a	voltage	signal	using	a	 250Ω	
resistor.	This	gives	a	voltage	signal	between	1-5V	which	we	can	connect	to	the	the	DAQ	device.	

Next	we	need	to	convert	from	a	 1 − 5𝑉signal	into	engineering	units	such	as	Celsius.,	i.e.,	 1 −
5𝑉signal	should	be	equivalent	to	 0 − 100℃.	See	Figure	20-11.	

	

Figure	20-11:	Scaling	from	Voltage	to	Engineering	Units	

Since	we	have	a	linear	scaling:	

𝑦 = 𝑎𝑥 + 𝑏	

We	need	to	find	a	(slope)	and	b	(intercept):	

149	 	 20	Sensors	and	Actuators	 	

Industrial IT and Automation - Part 3:	Automation

𝑦 − 𝑦0 =
𝑦P − 𝑦0
𝑥P − 𝑥0

(𝑥 − 𝑥0)	

We	have	that:	

(𝑥0, 𝑦0) = (1𝑉, 0℃)	

(𝑥P, 𝑦P) = (5𝑉, 100℃)	

This	gives:	

𝑦 − 0 =
100 − 0
5 − 1

(𝑥 − 1)	

Finally,	we	get:	

𝑦 = 25𝑥 − 25	

This	conversion	can	easily	be	implemented	in	any	programming	language.	Below	we	well	see	an	
example	where	we	use	LabVIEW	to	read	values	from	the	PT-100	device.	

LabVIEW	Example	

We	will	show	a	LabVIEW	example	where	we	read	data	from	this	Pt-100	sensors	using	a	NI	USB-
6008	DAQ	device	from	National	Instruments	(see	Figure	20-10).	

The	example	includes	getting	data	from	the	DAQ	device,	scaling	from	voltage	to	degrees	Celsius	
and	a	Low-pass	filter	that	reduces	the	noise.	

	

	

150	

21 OPC	
Web:	https://www.halvorsen.blog/documents/technology/opc/	 	

21.1 What	is	OPC?	
OPC	-	“Open	Process	Control”	or	“Open	Platform	Communications”.	

A	standard	that	defines	the	communication	of	data	between	devices	from	different	manufactures	

Requires	an	OPC	server	that	communicates	with	the	OPC	clients	

OPC	allows	“plug-and-play”,	gives	benefits	as	reduces	installation	time	and	the	opportunity	to	
choose	products	from	different	manufactures	

Different	standards:	“Real-time”	data	(OPC	DA),	Historical	data	(OPC	HDA),	Alarm	&	Event	data	
(OPC	AE),	etc.	 	

In	Figure	21-1	we	see	a	typical	OPC	scenario.	

151	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	21-1:	Typical	OPC	Scenario	

21.1.1 OPC	Specifications	

OPC	specifications:	

• OPC	DA	(Data	Access)	

The	most	common	OPC	specification	is	OPC	DA,	which	is	used	to	read	and	write	“real-time”	data.	
When	vendors	refer	to	OPC	generically,	they	typically	mean	OPC	DA.	

• OPC	HDA	(Historical	Data	Access)	

• OPC	A	&	E	(Alarms	&	Events)	

• ...	(many	others)	

These	OPC	specification	are	based	on	the	OLE,	COM,	and	DCOM	technologies	developed	by	
Microsoft	for	the	Microsoft	Windows	operating	system	family.	This	makes	it	complicated	to	make	
it	work	in	a	modern	Network!	Typically,	you	need	a	Tunneller	Software	in	order	to	share	the	OPC	
data	in	a	network	(between	OPC	Servers	and	Clients)	

• OPC	UA	(Unified	Architecture)	

152	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

OPC	UA	eliminating	the	need	to	use	a	Microsoft	Windows	based	platform	of	earlier	OPC	versions.	
OPC	UA	combines	the	functionality	of	the	existing	OPC	interfaces	with	new	technologies	such	as	
XML	and	Web	Services	(HTTP,	SOAP)	 	

21.2 MatrikonOPC	Simulation	Server	
A	lot	of	OPC	Servers	do	exist,	but	many	of	them	costs	a	lot.	The	MatrikonOPC	Simulation	Server	is	
free	of	charge.	It	can	be	used	for	development	and	test	purposes	not	for	commercial	applications.	

Download	for	free	from:	http://www.matrikonopc.com	 	

21.2.1 MatrikonOPC	Explorer	(OPC	Client)	

Figure	21-2	shows	the	MatrikonOPC	Explorer,	which	is	an	OPC	Client	for	test	purposes.	

	

	

Figure	21-2:	MatrikonOPC	Explorer	(OPC	Client)	

Figure	21-3	shows	how	to	Add	Tags	in	the	MatrikonOPC	Explorer.	

153	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	21-3:	MatrikonOPC	Explorer	–	Add	Tags	

	

	

21.3 OPC	DA	in	LabVIEW	
You	can	use	LabVIEW	as	an	OPC	client	by	connecting	to	an	OPC	server	through	a	DataSocket	
connection.	Figure	21-4	shows	the	DataSocket	palette	in	LabVIEW.	

154	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

	

	

Figure	21-4:	OPC	DA	in	LabVIEW	using	DataSocket	

In	the	examples	below	we	have	used	the	MatrikonOPC	Simulation	Server,	but	any	OPC	Server	
could	have	been	used.	

21.3.1 Write	to	OPC	Server	using	LabVIEW	

In	Figure	21-5	we	see	an	example	of	how	to	write	to	an	OPC	DA	Server.	

	

Figure	21-5:	OPC	DA	Write	in	LabVIEW	

Or	you	may	specify	the	URL	directly	(Figure	21-6):	

155	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	21-6:	OPC	DA	Write	in	LabVIEW,	Example	2	

21.3.2 Read	from	OPC	Server	using	LabVIEW	

In	Figure	21-7	we	see	an	example	of	how	to	read	from	an	OPC	DA	Server.	

	

Figure	21-7:	OPC	DA	Read	in	LabVIEW	

Or	you	may	specify	the	URL	directly	(Figure	21-8):	

	

Figure	21-8:	OPC	DA	Read	in	LabVIEW,	Example	2	

21.4 OPC	DA	in	Visual	Studio/C#	

156	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

An	easy	way	to	make	OPC	work	with	Visual	Studio	is	to	install	and	use	an	add-on	called	
“Measurement	Studio”.	Measurement	Studio	is	developed	by	National	Instruments.	

Measurement	Studio	is	an	add-on	to	Visual	Studio.	Measurement	Studio	is	used	for	development	
of	measurement,	control	and	monitoring	applications	using	.NET	and	Visual	Studio.	

Measurement	Studio	has	a	library	(DataSocket	library)	that	makes	it	possible	to	communicate	with	
OPC	servers.	

Read	from	OPC	Server	using	Visual	Studio:	

In	order	to	communicate	with	an	OPC	Server	we	can	use	the	DataSocket	API	that	is	part	of	the	
Measurement	Studio.	We	use	the	Matrikon	OPC	Simulation	Server.	

21.4.1 Read	OPC	Data	

Below	we	will	go	through	a	very	simple	example.	We	will	read	one	value	from	the	OPC	Server	each	
time	we	click	a	button.	

Visual	Studio	Project:	

	

Figure	21-9:	OPC	Read	Example	in	Visual	Studio	

Code:	

We	define	a	DataSocket	object:	

DataSocket dataSocket = new DataSocket();

157	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

Next,	We	Connect	to	the	OPC	Server:	

string opcUrl;
opcUrl = "opc://localhost/MATRIKON.OPC.Simulation/Bucket Brigade.Real4";

if (dataSocket.IsConnected)
 dataSocket.Disconnect();

dataSocket.Connect(opcUrl, AccessMode.Read);

Finally,	we	Read	OPC	Data:	

private void btnReadOpc_Click(object sender, EventArgs e)
{
 dataSocket.Update();

 txtReadOpcValue.Text = dataSocket.Data.Value.ToString();
}

We	test	the	Application	using	the	Matrikon	OPC	Explorer:	

	

	

SelectUrl:	

We	can	use	the	SelectUrl	method	if	we	want	to	pick	the	OPC	item	from	a	list	of	available	servers	
(both	local	servers	and	network	servers)	and	items.	

dataSocket.SelectUrl();

The	SelectUrl	method	will	pop	up	the	following	window:	

158	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

	

21.4.2 Write	OPC	Data	

We	use	the	same	DataSocket	API	here.	

Visual	Studio	Project:	

Below	we	will	go	through	a	very	simple	example.	We	will	write	one	value	to	the	OPC	Server	each	
time	we	click	a	button.	

	

Figure	21-10:	Write	OPC	Example	in	Visual	studio	

159	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

Code:	

We	define	a	DataSocket	object:	

DataSocket dataSocket = new DataSocket();

Next,	We	Connect	to	the	OPC	Server:	

string opcUrl;
opcUrl = "opc://localhost/MATRIKON.OPC.Simulation/Bucket Brigade.Real4";

if (dataSocket.IsConnected)
 dataSocket.Disconnect();

dataSocket.Connect(opcUrl, AccessMode.Write);

Finally,	we	Write	OPC	Data:	

private void btnWriteOpc_Click(object sender, EventArgs e)
{

 double opcValue = 0;

 opcValue = Convert.ToDouble(txtWriteOpcValue.Text);

 dataSocket.Data.Value = opcValue;

 dataSocket.Update();
}

We	test	the	Application	using	the	Matrikon	OPC	Explorer:	

	

160	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

21.4.3 Using	a	Timer	

We	can	use	a	timer	in	order	to	read	values	“continuously”,	i.e.	at	specific	intervals.	

In	the	“Components”	toolbox	we	find	the	“Timer”	Control:	

	

In	the	Properties	window	we	can	specify	the	Interval	(“Sampling	Time”)	in	milliseconds.	

	

	

We	can	start	the	timer	with	the	following	code:	

public Form1()
 {
 InitializeComponent();

 timer1.Start();
 }

In	the	Timer	Event	we	create	the	code	in	order	to	read	data	at	this	specific	interval.	

private void timer1_Tick(object sender, EventArgs e)

161	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

 {

 …
 …

 }

21.5 OPC	DA	in	MATLAB	
For	more	information	about	the	MATLAB	OPC	Toolbox:	http://se.mathworks.com/products/opc	 	

Acquire	Data	from	an	OPC	DA	Server	(with	Examples):	
http://se.mathworks.com/help/opc/examples/acquire-data-from-an-opc-data-access-
server.html?prodcode=OT&language=en	

21.6 OPC	UA	
OPC	UA	(Unified	Architecture)	is	the	“next	generation”	OPC.	OPC	UA	solves	problems	with	
standard/classic	OPC	(Figure	21-11).	

	

Figure	21-11:	OPC	DA	vs.	OPC	UA	

OPC	DA	limitations	and	challenges:	

• Works	only	on	Windows	

• Cumbersome	to	use	OPC	in	a	network	due	to	COM/DCOM	

OPC	UA	has	the	following	advantages:	

162	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

• OPC	UA	eliminating	the	need	to	use	a	Microsoft	Windows	based	platform	of	earlier	OPC	
versions.	 	

• OPC	UA	combines	the	functionality	of	the	existing	OPC	interfaces	with	new	technologies	
such	as	XML	and	Web	Services	(HTTP,	SOAP)	

• Cross-platform	

• No	dedicated	OPC	Server	is	no	longer	necessary	because	the	server	can	run	on	an	
embedded	system	 	 	

Security:	

OPC	UA	supports	two	protocols.	

• “UA	Binary”	protocol	opc.tcp://Server	
This	uses	a	simple	binary	protocol	

• “UA	XML”	protocol	http://Server	
This	used	open	standards	like	XML,	SOAP	(->	Web	Service)	

This	is	visible	to	application	programmers	only	via	changes	to	the	URL.	Otherwise	OPC	UA	works	
completely	transparent	to	the	API.	

	

To	open	DCOM	(which	OPC	DA	uses)	through	firewalls	demanded	a	large	hole	in	the	firewall,	
which	is	impossible	to	route	over	the	Internet!	 	

OPC	UA	requires	no	hole	in	firewall	(UA	XML),	with	OPC	UA	Binary	just	a	simple	“needle	stick”	is	
necessary	(Figure	21-12).	

163	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	21-12:	OPC	UA	and	Firewall	

OPC	UA	Server:	

With	OPC	DA,	the	server	can	only	run	on	a	Windows	computer,	while	OPC	UA	can	run	on	different	
systems,	such	as	embedded	systems,	Linux	and	Windows	(Figure	21-13).	 	

	

	

Figure	21-13:	An	OPC	UA	Server	can	run	on	Embedded	Linux	Systems	

21.6.1 OPC	UA	in	LabVIEW	

Figure	21-14	shows	the	OPC	UA	palette	in	LabVIEW.	

164	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

	

Figure	21-14:	The	OPC	UA	palette	in	LabVIEW	

Note!	In	order	to	the	OPC	UA	Vis	in	LabVIEW	you	need	to	install	the	“LabVIEW	DSC	Module”	or	the	
“LabVIEW	Real-Time	Module”.	

Using	the	LabVIEW	OPC	UA	palette	we	can	create	both	OPC	UA	Servers	and	OPC	UA	clients.	

OPC	UA	Server	

LabVIEW	OPC	UA	Server	Example	(see	Figure	21-15):	

	

Figure	21-15:	OPC	UA	Server	Example	–	Block	Diagram	

OPC	UA	Clients	

165	 	 21	OPC	 	

Industrial IT and Automation - Part 3:	Automation

LabVIEW	OPC	UA	Client	Write	Example	(Figure	21-16):	

	

Figure	21-16:	OPC	UA	Client	–	Write	to	OPC	UA	Server	

LabVIEW	OPC	UA	Client	Read	Example	(Figure	21-17):	

	

Figure	21-17:	OPC	UA	Client	–	Read	from	OPC	UA	Server	

For	test	purpose	we	start	by	running	all	these	3	programs	at	the	same	time	on	the	same	computer.	
If	everything	works	as	expected,	we	can	then	try	to	install	them	on	3	different	computers	in	a	
network.	

21.6.2 OPC	UA	in	MATLAB	

Until	MATLAB	R2015a	only	OPC	DA	was	supported.	From	MATLAB	R2015b	also	OPC	UA	is	
supported.	

	

	

166	

22 SCADA	Systems	
Web:	https://www.halvorsen.blog/documents/technology/scada/	 	

22.1 Introduction	
SCADA	(Supervisory	Control	And	Data	Acquisition)	is	a	type	of	Industrial	Control	System	(ICS).	

Industrial	Control	Systems	(ICS)	are	computer	controlled	systems	that	monitor	and	control	
industrial	processes	that	exist	in	the	physical	world.	

We	typically	can	divide	Industrial	Control	Systems	into	3	categories:	

• PLC	systems	
• DCS	systems	
• SCADA	systems	

Figure	20-1	shows	an	overview	of	the	different	types.	

	

Figure	22-1:	Industrial	Control	Systems	(ICS)	

Industrial	Control	Systems,	like	PLC	(Programmable	Logic	Controller),	DCS	(Distributed	Control	
System)	and	SCADA	(Supervisory	Control	And	Data	Acquisition)	share	many	of	the	same	features.	

The	SCADA	system	typically	contains	different	modules,	such	as:	

167	 	 22	SCADA	Systems	 	

Industrial IT and Automation - Part 3:	Automation

1. OPC	Server	

2. A	Database	that	stores	all	the	necessary	data	

3. Control	System	

4. Datalogging	System	

5. Alarm	System	

They	are	typically	implemented	as	separate	applications	because	they	should	be	able	to	run	on	
different	computers	in	a	network	(distributed).	See	Figure	22-2.	

	

Figure	22-2:	SCADA	System	Overview	

	

For	more	details,	see:	

https://www.halvorsen.blog/documents/technology/scada/	 	

	

168	

23 HIL	Simulation	
Web:	https://www.halvorsen.blog/documents/technology/hil/	 	

23.1 What	is	HIL	Simulation?	
What	is	Hardware-in-the-Loop	(HIL)	Simulation	or	What	is	Hardware-in-the-Loop	(HIL)	Test?	

The	Hardware-in-the-Loop	process	has	existed	for	no	more	than	15	to	20	years.	Its	roots	are	found	
in	the	Aviation	industry.	The	reason	the	use	of	a	HIL	process	is	becoming	more	prevalent	in	all	
industries	is	driven	by	two	major	factors:	time	to	market	and	complexity.	

Hardware-in-the-loop	(HIL)	simulation	is	a	technique	that	is	used	in	the	development	and	test	of	
complex	process	systems.	HIL	simulation	provides	an	effective	platform	by	adding	the	complexity	
of	the	plant	under	control	to	the	test	platform.	The	complexity	of	the	plant	under	control	is	
included	in	test	and	development	by	adding	a	mathematical	representation	of	all	related	dynamic	
systems.	These	mathematical	representations	are	referred	to	as	the	“plant	simulation.”	

Hardware-In-the-Loop	is	a	form	of	real-time	simulation.	Hardware-In-the-Loop	differs	from	real-
time	simulation	by	the	addition	of	a	real	component	in	the	loop.	This	component	may	be	an	
“Electronic	Control	Unit”	(ECU).	

	

Figure	23-1:	HIL	Simulation	

Figure	23-1	shows	that	the	plant	is	simulated	and	the	ECU	is	real.	The	purpose	of	a	Hardware-In-
the-Loop	system	is	to	provide	all	of	the	electrical	stimuli	needed	to	fully	exercise	the	ECU.	In	this	
way,	you	“fool”	the	ECU	into	thinking	that	it	is	indeed	connected	to	a	real	plant.	

169	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

The	HIL	simulation	includes	a	mathematical	model	of	the	process	and	a	hardware	device/ECU	you	
want	to	test,	e.g.	an	industrial	PID	controller	we	will	use	in	our	example.	The	hardware	device	is	
normally	an	embedded	system.	

23.2 Why	use	HIL	simulation?	
This	question	is	an	important	part	of	understanding	real-time	technology.	To	restate	the	question	
using	a	control	systems	term:	Why	not	connect	the	embedded	system	under	test	to	the	“real	
plant”,	that	is	the	dynamic	system	being	controlled,	to	perform	development	and	testing?	In	many	
cases,	the	most	effective	way	to	develop	an	embedded	system	is	to	connect	the	embedded	system	
to	the	real	plant,	if	such	a	plant	exists.	Increasingly	however,	HIL	simulation	is	more	efficient	and	
or	required.	

The	main	purpose	with	the	HIL	Simulation	is	to	test	the	hardware	device	on	a	simulator	before	we	
implement	it	on	the	real	process.	

The	metric	of	development	and	test	efficiency	is	typically	a	formula	that	includes	the	following	
factors:	

• Cost	
• Duration	
• Safety	

You	may	want	to	test	the	different	part	of	the	system	individually	to	make	sure	it	works	as	planned	
and	HIL	simulation	is	important	in	design	and	testing	of	the	different	systems.	

It	may	be	very	useful,	e.g.,	to	test	a	controller	function	with	a	simulated	process	before	the	
controller	is	applied	to	the	real	(physical)	process.	If	the	mathematical	model	used	in	the	simulator	
is	an	accurate	representation	of	the	real	process,	you	may	even	tune	the	controller	parameters	
(e.g.	the	PID	parameters)	using	the	simulator.	

It	is	also	very	useful	for	training	purposes,	i.e.,	the	process	operator	may	learn	how	the	system	
works	and	operate	by	using	the	hardware-in-the-loop	simulation.	

Another	benefit	of	Hardware-In-the-Loop	is	that	testing	can	be	done	without	damaging	equipment	
or	endangering	lives.	For	instance,	potentially	damaging	conditions	in	an	engine,	such	as	over-
temperature,	can	be	simulated	to	test	if	the	ECU	can	detect	and	report	it.	Another	instance	would	
be	an	anti-lock	braking	(ABS)	simulation	at	performance	extremes.	If	simulated,	the	performance	
of	the	ABS	system	can	be	evaluated	without	risk	to	the	vehicle	or	operator.	

In	Figure	23-2	we	see	a	typical	HIL	test	system:	

170	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

	

Figure	23-2:	HIL	Test	System	

HIL	should	be	an	integrated	part	of	the	design	and	testing	cycle.	The	Figure	below	represents	the	
design	cycle	of	a	typical	system,	e.g.	a	control	system.	

	

Figure	23-3:	Design	Cycle	

As	the	complexity	of	the	hardware	being	controlled	increases,	so	too	does	the	complexity	of	the	
embedded	system	that	is	designed	to	control	the	hardware.	Hardware-in-the-Loop	(HIL)	
simulation	is	a	technique	that	is	used	increasingly	in	the	development	and	test	of	complex	real-
time	embedded	systems.	 	

The	purpose	of	HIL	simulation	is	to	provide	an	effective	platform	for	developing	and	testing	real-
time	embedded	systems,	often	in	close	parallel	with	the	development	of	the	hardware.	Software	
development	no	longer	needs	to	wait	for	a	physical	plant	in	order	to	write	and	test	code.	

HIL	simulation	provides	an	effective	platform	by	adding	the	complexity	of	the	plant	under	control	
to	the	development	and	test	platform.	The	complexity	of	the	plant	under	control	is	included	in	test	

171	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

and	development	by	adding	a	mathematical	representation	(model)	of	all	related	dynamic	
systems.	These	mathematical	representations	are	referred	to	as	the	“plant	simulation.”	

23.3 Challenges	
When	testing,	we	have	lots	of	challenges:	

• Cost	to	test	
• Cost	of	failure	
• Availability	
• System	variation	
• Repeatability	 	

In	these	situations,	is	HIL	simulation	a	powerful	technique.	With	HIL	Testing	we	will	reduce	cost	
and	risk.	

With	HIL	Testing	cost	and	risk	will	be	reduced:	

• Increased	reliability	and	quality	
• More	efficient	development	
• Lower	cost	to	innovate	

23.4 Applications	

23.4.1 Embedded	Control	Systems	

HIL	simulation	is	widely	used	in	developing	Embedded	Control	Systems,	such	as:	

• Medical	Devices	
• Industrial	machines	
• Power	Generation	Systems	
• White	Goods	
• Aerospace	
• Automotive	
• Process	Control	

	

	

172	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

23.5 Procedure	
The	main	steps	in	HIL	Simulation	are	as	follows:	

1. Develop	a	mathematical	model.	Create	a	mathematical	model	of	the	real	environment	
where	the	hardware	device	is	meant	to	be	used.	

2. HIL	Simulation	(Software	+	Hardware).	 	 Test	your	device	on	a	simulated	process	
(mathematical	model).	

3. Implement	your	hardware	on	the	Real	Process	(Hardware	only).	If	everything	is	OK,	you	
may	want	to	implement	your	hardware	device	in	the	real	environment	where	it	meant	to	
be	used.	

These	tasks	follow	the	main	idea	with	a	HIL	simulation.	First	step	is	to	simulate	your	system	in	
software.	Next	is	to	test	your	hardware	on	the	simulated	process.	Finally,	you	implement	your	
hardware	on	the	real	system.	 	

23.6 Practical	Example	

23.6.1 Introduction	

It	may	be	very	useful	to	test	a	controller	function	with	a	simulated	process	before	the	controller	is	
applied	to	the	real	(physical)	process.	If	the	mathematical	model	used	in	the	simulator	is	an	
accurate	representation	of	the	real	process,	you	may	even	tune	the	controller	parameters	(e.g.	the	
PID	parameters)	using	the	simulator.	

If	the	controller	to	be	tested	is	implemented	in	the	controller	hardware,	often	denoted	the	
electronic	control	unit	(ECU),	and	the	simulator	has	to	run	in	real	time,	i.e.	the	simulation	time	
develops	as	real	time.	This	real-time	simulation	is	obtained	by	setting	the	simulation	algorithm	
cycle	time	equal	to	the	simulation	time	step.	

Typically,	the	simulator	communicates	with	the	ECU	via	ordinary	I/O	(current,	voltage,	digital).	
Such	a	system	-	where	the	real	controller	is	controlling	a	simulated	process	-	is	denoted	Hardware-
in-the-loop	(HIL)	simulation.	HIL-simulation	is	used	in	many	industries,	e.g.	automotive	industry	for	
testing	clutch	automation	systems	and	in	marine	and	aircraft	industry	to	test	autopilots	of	vessels.	

The	Figure	below	illustrates	the	principle	of	testing	a	control	system	by	replacing	the	physical	
system	(or	process)	to	be	controlled	by	a	simulated	system.	The	controller	is	assumed	to	be	a	PID	
controller,	but	the	figure	applies	to	any	controller	function.	

173	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

	

23.6.2 Simulated	Process	

In	this	example,	a	mathematical	model	of	the	following	small-scale	process	is	used	(“Air	Heater”):	

	

Figure	23-4:	Air	Heater	System	

The	mathematical	model	is:	

𝑇QR= =
1
𝜃=

−𝑇QR= + 𝐾T𝑢 𝑡 − 𝜃U + 𝑇VWX 	

Where:	

• 𝑢	[V]		 is	the	control	signal	to	the	heater.	
• 𝜃=	[s]		 is	time-constant.	
• 𝐾T	[𝑑𝑒𝑔	𝐶	/	𝑉]	 is	the	heater	gain.	

174	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

• 𝜃U	[𝑠]	 is	the	time-delay	representing	air	transportation	and	sluggishness	in	the	heater.	
• 𝑇VWX	 is	the	environmental	(room)	temperature.	It	is	the	temperature	in	the	outlet	air	of	

the	air	tube	when	the	control	signal	to	the	heater	has	been	set	to	zero	for	relatively	long	
time	(some	minutes).	

23.6.3 Hardware	

The	main	purpose	with	the	HIL	Simulation	is	to	test	the	hardware	device	on	a	simulator	before	we	
implement	it	on	the	real	process.	

In	this	we	use	an	ordinary	industrial	PID	controller,	such	as	Fuji	PGX5.	 	

	

Figure	23-5:	Fuji	PXG5	PID	Controller	

We	will	test	the	Fuji	PGX5	PID	controller	on	a	model,	and	if	everything	is	OK	we	will	implement	the	
controller	on	the	real	system.	

We	will	use	LabVIEW	in	order	to	implement	the	HIL	Simulation.	LabVIEW	is	a	graphical	
programming	language	from	Nation	Instruments,	and	it	is	well	suited	for	such	implementation.	

23.6.4 The	Procedure	

The	procedure	is	as	follows:	

4. PID	Control	and	Simulation	in	LabVIEW	(Software	only).	Simulate	the	model	and	
implement	the	built-in	PID	controller	in	LabVIEW.	No	hardware	involved.	

5. Configure	the	Fuji	PGX5	PID	controller	(Hardware	only).	Configure	and	be	familiar	with	the	
industrial	Fuji	PGX5	PID	controller.	

175	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

6. HIL	Simulation	in	LabVIEW	(Software	+	Hardware).	Test	your	industrial	Fuji	PGX5	PID	
controller	on	your	simulated	process.	

7. PID	Tuning	(Software	+	Hardware).	Find	proper	PID	parameters,	etc.	for	the	controller	
based	on	the	model.	

8. Implement	your	hardware,	i.e.,	the	Fuji	PGX5	PID	controller	on	the	Real	Process	
(Hardware	only).	Now	that	you	have	tested	your	Fuji	PGX5	PID	controller	on	the	simulated	
process,	it’s	time	to	implement	it	on	the	real	process.	Fine-tune	PID	parameters	if	
necessary.	 	

These	tasks	follow	the	main	idea	with	a	HIL	simulation.	First	step	is	to	simulate	your	system	in	
software.	Next	is	to	test	your	hardware	on	the	simulated	process.	Finally	you	implement	your	
hardware	on	the	real	system.	 	

Below	we	see	the	difference	between	a	traditional	process	system	using	a	software	program	for	
implementing	the	control	system	and	a	HIL	simulation.	

Traditional	process	system	using	a	software	program	for	implementing	the	control	system:	

	

In	this	case	you	need	to	scale	the	voltage	signal	you	get	from	the	process	and	the	DAQ	to	a	
temperature	value	(1 − 5𝑉	 → 	20 − 50℃).	

	

HIL	Simulation:	

	

In	this	case	you	need	to	scale	the	temperature	value	you	get	from	the	simulated	process	before	
you	send	the	value	to	the	Fuji	PGX5	PID	controller	(20 − 50℃	 → 1 − 5𝑉).	

176	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

23.6.5 HIL	Simulation	in	LabVIEW	

Below	we	see	an	excerpt	of	the	program	created	in	LabVIEW:	

	

In	the	example	we	have	used	a	“Simulation	Loop”	in	LabVIEW,	but	an	ordinary	While	Loop	may	
also	be	used.	The	model	is	implemented	in	a	Simulation	Subsystem.	

PXG5	PID.vi:	

Inside	the	SubVI	“PXG5	PID.vi”	is	the	I/O	from	and	to	the	PXG5	PID	controller	implemented	using	
an	ordinary	DAQ	device	(NI	USB-6008	USB	DAQ	device),	i.e.,	the	simulated	process	value	needs	to	
be	sent	to	the	controller	and	the	manipulated	value	from	the	controller	need	to	be	sent	to	the	
simulated	process.	 	 Scaling	is	also	implemented	in	this	SubVI.	

Below	we	see	the	“PXG5	PID.vi”:	

	

Mathematical	Model:	

In	the	Model	–	Air	Heater.vi	simulation	subsystem	is	the	mathematical	model	implemented	as	
shown	below:	

177	 	 23	HIL	Simulation	

Industrial IT and Automation - Part 3:	Automation

	

Results:	

The	simulation	results	become:	

	

	 The	Set	Point	(SP)	is	set	on	the	PXG5	PID	controller	(in	this	case	30℃	 at	time	 𝑡 = 2𝑠).	The	
simulation	is	based	on	PID	parameters	set	on	the	PXG5	PID	controller	using	the	built-in	Auto-
tuning	functionality	that	the	PXG5	PID	controller	has.	

	

	

	

178	

Part	4 :	Internet	of	Things	
In	this	part,	we	will	give	an	overview	of	Internet	of	Things,	Home	Automation	and	devices	such	as	
Arduino	and	Raspberry	Pi.	

	

	

	

179	

24 Internet	of	Things	(IoT)	
Web:	https://www.halvorsen.blog/documents/technology/iot/	 	

The	Internet	of	Things	(IoT)	is	the	network	of	physical	objects	or	"things"	embedded	with	
electronics,	software,	sensors,	and	network	connectivity,	which	enables	these	objects	to	collect	
and	exchange	data.	The	Internet	of	Things	allows	objects	to	be	sensed	and	controlled	remotely	
across	existing	network	infrastructure,	creating	opportunities	for	more	direct	integration	between	
the	physical	world	and	computer-based	systems,	and	resulting	in	improved	efficiency,	accuracy	
and	economic	benefit.	https://en.wikipedia.org/wiki/Internet_of_Things	 	

It	is	expected	that	all	kinds	of	things	will	be	connected	to	the	Internet	(Figure	24-1),	e.g.,	lights,	
heating	system,	even	the	fridge.	

	

Figure	24-1:	Internet	of	Things	(IoT)	

	 	

 Industrial IT and Automation – Part 4: Internet of Things

	

In	Figure	24-2	we	see	a	chart	of	how	many	devices	that	is	already	connected	to	Internet	and	how	
many	devices	possibly	connected	in	the	future.	

	

Figure	24-2:	IoT	–	Number	of	Devices	connected	to	Internet	 	

	 	

 Industrial IT and Automation – Part 4: Internet of Things

The	devices	we	will	focus	on	in	this	document	are	Arduino	and	Raspberry	Pi	(Figure	24-3).	These	
devices	are	small	computers	or	microcontrollers.	These	devices	will	be	explained	in	more	detail	
later.	

	

Figure	24-3:	Internet	of	Things	Devices	

24.1 Data	Logging	
An	important	part	of	IoT	is	to	log	data	from	all	these	devices.	

24.1.1 Web-based	Logging	Services	

Examples:	

• Temboo	by	LogMeIn	
• Xively	
• ThingSpeak	
• Etc.	

See	Figure	24-4.	

	 	

 Industrial IT and Automation – Part 4: Internet of Things

	

Figure	24-4:	Web-based	Logging	Service	Example	

A	lot	of	existing	solutions	do	exist,	here	I	will	mention	Temboo,	Xively	and	ThingSpeak.	

Temboo	

www.temboo.com	

Connect	your	Arduino	&	Arduino-compatible	devices	to	a	vast	array	of	web-based	resources	and	
services	with	the	power	of	Temboo.	

Xively	by	LogMeIn	

https://xively.com	

https://en.wikipedia.org/wiki/Xively	

Xively	by	LogMeIn	offers	an	Internet	of	Things	(IoT)	platform	as	a	service,	business	services,	and	
partners	that	enable	businesses	to	quickly	connect	products	and	operations	to	the	Internet.	

ThingSpeak:	

ThingSpeak	is	a	IoT	Cloud	Service	that	lets	you	collect	and	store	sensor	data	in	the	cloud	and	
develop	Internet	of	Things	applications.	

It	works	with	Arduino,	Raspberry	Pi	and	MATLAB,	etc.	

https://thingspeak.com	 	

	

	 	 	

	

183	

25 Home	Automation	
Home	automation	(also	known	as	Smart	House,	Smart	Home,	etc.)	solutions	has	greatly	increased	
in	popularity	over	the	past	several	years.	Home	Automation	may	include	centralized	control	of	
lighting,	heating,	ventilation	and	air	conditioning,	appliances,	security	locks	of	gates	and	doors	and	
other	systems,	to	provide	improved	convenience,	comfort,	energy	efficiency	and	security.	

https://www.halvorsen.blog/documents/projects/projects/smart_buildings.php	 	 	

Figure	23-1	shows	some	examples.	

	

Figure	25-1:	Home	Automation	Examples	

In	Figure	25-2	we	see	a	typical	house	with	Home	Automation.	

184	 	 25	Home	Automation	 	

 Industrial IT and Automation – Part 4: Internet of Things

	

Figure	25-2:	A	Typical	House	with	Home	Automation	

In	this	example,	we	are	using	Arduino	and	Raspberry	Pi	as	monitoring	and	control	devices,	see	
Figure	25-3.	

	

Figure	25-3:	Home	Automation	with	Arduino	and	Raspberry	Pi	

	

185	 	 25	Home	Automation	 	

 Industrial IT and Automation – Part 4: Internet of Things

25.1 Home	Automation	Platform	
In	this	subchapter,	we	will	give	an	overview	of	a	Home	Automation	platform.	

Figure	25-4	shows	an	overview	of	the	platform.	

	

Figure	25-4:	Home	Automation	Platform	

The	platform	consists	of	2	main	parts:	

• Data	Management	
• Data	Monitoring	

These	parts	will	be	explained	below.	

Management:	

Here	we	can	configure	Devices	and	Tags	(Figure	25-5,	Figure	25-6)	

186	 	 25	Home	Automation	 	

 Industrial IT and Automation – Part 4: Internet of Things

	

Figure	25-5:	DMM	Platform	-	Management	

	

Figure	25-6:	DMM	Management	–	Tag	Configuration	

Monitoring:	

Here	(Figure	25-7)	we	can	see	the	logged	data	with	charting	possibilities,	etc.	

187	 	 25	Home	Automation	 	

 Industrial IT and Automation – Part 4: Internet of Things

	

Figure	25-7:	DMM	Platform	-	Monitoring	

With	the	DMM	platform	you	can	manage	and	monitor	IoT	data	for	one	or	many	houses.	

	

Figure	25-8:	DMM	Overview	

For	more	information,	refer	to	the	following	web	site:	
https://www.halvorsen.blog/documents/projects/projects/dmm.php	 	

	

188	

26 Arduino	
Web:	https://www.halvorsen.blog/documents/technology/iot/arduino.php	 	

Arduino	(Figure	26-1)	is	an	open-source	prototyping	platform	based	on	easy-to-use	hardware	and	
software.	Arduino	boards	are	able	to	read	inputs	-	light	on	a	sensor,	a	finger	on	a	button,	and	turn	
it	into	an	output	-	activating	a	motor,	turning	on	an	LED,	etc.	You	can	tell	your	board	what	to	do	by	
sending	a	set	of	instructions	to	the	microcontroller	on	the	board.	To	do	so	you	use	the	Arduino	
programming	language,	and	the	Arduino	Integrated	Software	Environment	(IDE).	 	

www.arduino.cc	

https://en.wikipedia.org/wiki/Arduino	

	

Figure	26-1:	Arduino	

Lots	of	different	Arduino	boards	do	exist,	we	will	focus	on	the	most	popular	board,	namely	
Arduino	UNO.	

For	information	about	other	boards,	please	see:	

https://www.arduino.cc/en/Main/Products	 	

26.1 Arduino	UNO	

189	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

The	Uno	is	a	microcontroller	board.	It	has	14	digital	input/output	pins	(of	which	6	can	be	used	as	
PWM	outputs)	and	6	analog	inputs.	The	operating	voltage	is	5V.	

	

	

Figure	26-2:	Arduino	UNO	

For	more	information	about	Arduino	UNO,	see	the	following:	

https://www.arduino.cc/en/Main/ArduinoBoardUno	 	

26.2 Sensors	and	Actuators	
Figure	26-3	shows	some	typical	sensors	and	actuators	we	can	use	with	Arduino.	

190	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Figure	26-3:	Typical	Sensors	and	Actuators	used	with	Arduino	

Arduino	Starter	Kit:	

	

Figure	26-4:	The	Arduino	Starter	Kit	

Read	more	about	the	Arduino	Starter	Kit	here:	

http://arduino.cc/en/Main/ArduinoStarterKit	

Starter	Kit	Videos:	

https://www.youtube.com/playlist?feature=edit_ok&list=PLT6rF_I5kknPf2qlVFlvH47qHvqvzkknd	

26.3 Software	
Software	Installation:	http://arduino.cc/en/Main/Software	 	

191	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

In	Figure	26-5	we	see	the	programming	environment	(IDE)	for	Arduino.	

	

Figure	26-5:	Arduino	Programming	Environment	(Sketch)	

The	syntax	is	similar	to	C	programming.	

Example:	

This	example	shows	the	simplest	thing	you	can	do	with	an	Arduino	to	see	physical	output:	it	blinks	
an	LED	(Figure	26-6).	

	

Figure	26-6:	LED	

Hardware	Required	

• Arduino	Board,	e.g.,	Arduino	UNO	

192	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

• LED	(any	color)	
• 220Ω	 resistor	

The	value	of	the	resistor	in	series	with	the	LED	may	be	of	a	different	value	than	 220Ω;	the	LED	will	
lit	up	also	with	values	up	to	 1𝑘Ω.	

In	Figure	26-7	wee	see	the	wiring	for	how	to	connect	a	LED	to	the	Arduino:	

	

Figure	26-7:	Connecting	a	LED	to	the	Arduino	

Sketch	Program:	

void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

For	more	details,	please	see	https://www.arduino.cc/en/Tutorial/Blink.	

26.4 Code	Examples	

193	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

Below	we	will	see	some	examples	of	how	the	use	Arduino	to	read	temperature	values	from	
different	temperature	sensors.	The	sensors	used	in	the	examples	are	very	inexpensive	and	quite	
easy	to	use.	

26.4.1 TMP36	Temperature	Sensor	Example	

In	this	example	we	will	use	a	TMP36	temperature	sensor,	see	Figure	26-8.	

	

Figure	26-8:	TMP36	Temperature	Sensor	

Technical	Data	(Figure	26-9):	

	

Figure	26-9:	TMP36	Technical	Data	

From	the	data	sheet	we	also	have	the	following	plot	(Figure	26-10):	

194	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Figure	26-10:	TMP36	Voltage	vs.	Temperature	

	

We	have	a	linear	relationship:	

	

From	the	plot,	we	have:	

(x1,	y1)	=	(750mV,	25°C)	

(x2,	y2)	=	(1000mV,	50°C)	

We	then	use	the	following	formula:	

	

You	have	to	find	a	(slope)	and	b	(intercept):	

y-25°C	=	((50°C-25°C)/(1000mV-750mV))	*	(x-750mV)	

This	gives:	

y[°C]	=	(1/10)*x[mv]-50	

For	more	information	about	the	sensor:	https://www.sparkfun.com/products/10988	 	

Wiring	(Figure	26-11):	

195	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Figure	26-11:	Hooking	up	Arduino	with	Sensors	using	a	Breadboard	

Sketch:	

TMP36 Temperature Sensor Example
// We'll use analog input 0 to read Temperature Data
const int temperaturePin = 0;
void setup()
{
 Serial.begin(9600);
}
void loop()
{
 float voltage, degreesC, degreesF;
 voltage = getVoltage(temperaturePin);

 // Now we'll convert the voltage to degrees Celsius.
 // This formula comes from the temperature sensor datasheet:
 degreesC = (voltage - 0.5) * 100.0;

 // Send data from the Arduino to the serial monitor window
 Serial.print("voltage: ");
 Serial.print(voltage);
 Serial.print(" deg C: ");
 Serial.println(degreesC);
 delay(1000); // repeat once per second (change as you wish!)
}
float getVoltage(int pin)
{
 return (analogRead(pin) * 0.004882814);

 // This equation converts the 0 to 1023 value that analogRead()
 // returns, into a 0.0 to 5.0 value that is the true voltage
 // being read at that pin.
}

Serial	Monitor	(Figure	26-12):	

196	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Figure	26-12:	Serial	Monitor	output	from	the	TMP36	Example	

26.4.2 NTC	Thermistor	Example	

In	this	example,	we	will	use	a	NTC	thermistor	temperature	sensor,	see	Figure	26-8.	

	

	

Figure	26-13:	NTC	Thermistor	

NTC	Thermistor	Technical	Data	(Figure	26-14):	

	

Figure	26-14:	NTC	Thermistor	Technical	Data	

Wiring	(Figure	26-15):	

197	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Figure	26-15:	NTC	Thermistor	Wiring	

The	problem	with	resistance	sensors	is	that	the	Arduino	analog	interfaces	can’t	directly	detect	
resistance	changes.	 	

This	will	require	some	extra	electronic	components.	The	easiest	way	to	detect	a	change	in	
resistance	is	to	convert	that	change	to	a	voltage	change.	You	do	that	using	a	voltage	divider	(see	
wiring	in	Figure	26-15	and	Figure	26-16).	

	

Figure	26-16:	Voltage	Divider	

By	keeping	the	power	source	output	constant,	as	the	resistance	of	the	sensor	changes,	the	voltage	
divider	circuit	changes,	and	the	output	voltage	changes.	The	size	of	resistor	you	need	for	the	R1	
resistor	depends	on	the	resistance	range	generated	by	the	sensor	and	how	sensitive	you	want	the	
output	voltage	to	change.	 	

Generally,	a	value	between	1K	and	10K	ohms	works	just	fine	to	create	a	meaningful	output	voltage	
that	you	can	detect	in	your	Arduino	analog	input	interface.	

We	have	used	the	Steinhart-Hart	Equation	in	order	to	find	the	temperature:	

198	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Sketch:	

// Read Temerature Values from NTC Thermistor
const int temperaturePin = 0;
void setup()
{
 Serial.begin(9600);
}
void loop()
{
 int temperature = getTemp();
 Serial.print("Temperature Value: ");
 Serial.print(temperature);
 Serial.println("*C");
 delay(1000);
}
double getTemp()
{
 // Inputs ADC Value from Thermistor and outputs Temperature in Celsius
 int RawADC = analogRead(temperaturePin);
 long Resistance;
 double Temp;
 // Assuming a 10k Thermistor. Calculation is actually: Resistance =
(1024/ADC)
 Resistance=((10240000/RawADC) - 10000);
 // Utilizes the Steinhart-Hart Thermistor Equation:
 // Temperature in Kelvin = 1 / {A + B[ln(R)] + C[ln(R)]^3}
 // where A = 0.001129148, B = 0.000234125 and C = 8.76741E-08
 Temp = log(Resistance);
 Temp = 1 / (0.001129148 + (0.000234125 * Temp) + (0.0000000876741 * Temp *
Temp * Temp));
 Temp = Temp - 273.15; // Convert Kelvin to Celsius
 return Temp; // Return the Temperature
}

Serial	Monitor	(Figure	26-17):	

	

Figure	26-17:	Serial	Monitor	output	from	the	NTC	Thermistor	Example	

199	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

26.5 Arduino	Shields	
Shields	(Figure	26-18)	are	boards	that	can	be	plugged	on	top	of	the	Arduino	in	order	to	extend	its	
capabilities.	

Some	popular	shields	are	Arduino	Wi-Fi	Shield,	Arduino	Ethernet	shield	and	Arduino	GSM	Shield.	

	

Figure	26-18:	Arduino	Shields	

For	more	information	about	Arduino	shields:	

https://www.arduino.cc/en/Main/ArduinoShields	

	

With	the	Arduino	Wi-Fi	Shield	or	Arduino	Ethernet	Shield	you	can	connect	an	Arduino	board	to	the	
internet.	It	can	serve	as	either	a	server	accepting	incoming	connections	or	a	client	making	
outgoing	ones.	

	

200	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Figure	26-19:	Arduino	Wi-Fi/Ethernet	Shields	

Arduino	Ethernet	Shield	

http://arduino.cc/en/Reference/Ethernet	

Arduino	Wi-Fi	Shield	

http://arduino.cc/en/Reference/WiFi	 	

Both	the	Arduino	Ethernet	Shield	and	the	Arduino	Wi-Fi	Shield	has	an	SD	card	reader.	See	the	SD	
Library:	http://arduino.cc/en/Reference/SD	 	

26.6 XBee	
What	is	XBee?	XBee	are	a	popular	wireless	transceivers	for	a	number	of	reasons.	 	

They’re	flexible	–	they	send	and	receive	data	over	a	serial	port,	which	means	they’re	compatible	
with	both	computers	and	microcontrollers	(like	Arduino).	 	

They	are	highly	configurable	–	you	can	have	meshed	networks	with	dozens	of	XBees,	or	just	a	pair	
swapping	data.	 	

You	can	use	them	to	remotely	control	your	robot,	or	arrange	them	all	over	your	house	to	monitor	
temperatures	or	lighting	conditions	in	every	room.	

	

201	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

	

Figure	26-20:	XBee	Wireless	Communication	

	

https://en.wikipedia.org/wiki/XBee	 	

XBee	is	the	brand	name	from	Digi	International	for	a	family	of	form	factor	compatible	radio	
modules.	 	

www.digi.com/xbee/	 	

XBees	are	tiny	blue	chips	that	can	communicate	wirelessly	with	each	other	

These	modules	use	the	IEEE	802.15.4	networking	protocol	for	fast	point-to-multipoint	or	peer-to-
peer	networking.	

XBee	uses	the	ZigBee	standard	and	adds	to	it	and	wraps	it	up	in	their	own	neat	little	package.	
http://www.zigbee.org/.	

Most	of	the	Xbee	modules	operate	at	2.4GHz	

See	also:	https://www.sparkfun.com/pages/xbee_guide	 	

26.7 XBee	Hardware	
You	need	2	things:	

1. XBee	Modules,	lots	of	different	types	exist	

2. XBee	Adapter	Boards	-	Examples:	

– XBee	USB	Adapter	

– XBee	SIP	Adapter	

– XBee	5V/3.3V	Adapter	

202	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

– Arduino	Wireless	SD	Shield	(with	XBee	connector)	

	

	

	

	

	

Figure	26-21:	XBee	Communication	Example	

203	 	 26	Arduino	

Industrial IT and Automation – Part 4: Internet of Things

26.8 Fritzing	
An	open	source	tool	for	making	simple	wiring	diagram	for	your	hardware	wiring.	

https://en.wikipedia.org/wiki/Fritzing	 	

http://fritzing.org	

	

	

204	

27 Raspberry	Pi	
Web:	https://www.halvorsen.blog/documents/technology/iot/raspberry_pi.php	 	

The	Raspberry	Pi	is	a	low	cost,	credit-card	sized	computer	that	plugs	into	a	computer	monitor	or	
TV,	and	uses	a	standard	keyboard	and	mouse.	The	Raspberry	Pi	can	run	Linux	and	Windows	10	IoT	
Core.	

	

Figure	27-1:	Raspberry	Pi	

The	Raspberry	Pi	has	the	following	specifications:	

• A	900MHz	quad-core	ARM	Cortex-A7	CPU,	1GB	RAM	
• Micro	SD	Card	
• Power	(Micro	USB)	
• 3.5mm	audio	jack/composite	video	
• Wi-Fi	and	Bluetooth	
• 40	GPIO	pins	
• 4	x	USB	2.0	
• Ethernet	
• 13x	-	GPIO	pins	
• 2x	-	SPI	buses	
• 1x	-	I2C	bus	
• 2x	-	5V	power	pins	
• 2x	-	3.3V	power	pins	
• 8x	-	Ground	pins	

205	 	 27	Raspberry	Pi	 	

 Industrial IT and Automation – Part 4: Internet of Things

	

	

Figure	27-2:	Raspberry	Pi	

	

	

Figure	27-3:	Raspberry	Pi	Hardware	and	Connectors	

206	 	 27	Raspberry	Pi	 	

 Industrial IT and Automation – Part 4: Internet of Things

The	Raspberry	Pi	2	type	B	runs	a	quad-core	ARM	Cortex-A7	CPU	and	1	GB	RAM.	It	offers	the	
following	Connectors:	

• 4	x	USB	2.0	sockets	

• 10/100	BaseT	Ethernet	socket	

• HDMI	video	socket	

• RCA	composite	video	socket	

• microSD	card	socket	

• Powered	from	microUSB	socket	

• 3.5	mm	audio	out	jack	

• Header	for	GPIO	and	serial	buses	(I2C	and	SPI)	

• Display	Serial	Interface	(DSI)	15-way	flat	flex	cable	connector	with	two	data	lanes	and	a	
clock	lane	

• Camera	connector	15-pin	MIPI	Camera	Serial	Interface	(CSI-2)	

	

Figure	27-4	shows	the	Raspberry	Pi	Pin	Mappings:	

	

Figure	27-4:	Raspberry	Pi	–	Pin	Mappings	

207	 	 27	Raspberry	Pi	 	

 Industrial IT and Automation – Part 4: Internet of Things

27.1 Accessories	
Figure	27-5	shows	some	official	accessories	that	can	be	used	with	Raspberry	Pi.	

	

Figure	27-5:	Raspberry	Pi	Accessories	

27.2 Communication	Protocols	
Raspberry	Pi	supports	the	following	protocols:	

• UART	(Universal	Asynchronous	Receiver/Transmitter,)	

– http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter	 	

• SPI	(Serial	Peripheral	Interface)	

– http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus	 	

• I2C	(Inter-Integrated	Circuit)	

– http://en.wikipedia.org/wiki/I2C	 	

27.3 Windows	10	IoT	Core	
Windows	10	IoT	Core	is	a	small	scaled	version	of	Windows	running	on	small	devices	such	as	
Raspberry	Pi	2.	

More	information:	https://dev.windows.com/iot	

	

208	

28 Industry	4.0	
Web:	https://www.halvorsen.blog/documents/technology/industry40/	 	

The	new	“buzzword”	for	the	combination	of	industry	and	the	current	Internet	of	Things	(IoT)	
technology	is	Industry	4.0.	 	

The	term	was	first	used	in	2011	in	Germany.	In	October	2012,	a	Working	Group	on	Industry	4.0	
presented	a	set	of	Industry	4.0	implementation	recommendations	to	the	German	federal	
government.	The	high-tech	strategy	document	outlined	a	plan	to	almost	fully	computerize	the	
manufacturing	industry	without	the	need	for	human	involvement[3].	

So,	is	it	just	a	“buzzword”	or	is	it	just	“same	shit	–	new	wrapping”?	

First	things	first	–	this	isn't	a	new	technology.	Nor	is	it	a	business	discipline.	It	is	in	fact	a	new	
approach	to	achieve	results	that	weren't	possible	10	years	ago	thanks	to	advancements	in	
technology	over	the	past	decade.	 	

Reference:	

http://www.techradar.com/news/world-of-tech/future-tech/5-things-you-should-know-about-
industry-4-0-1289534	

Industry	4.0	is	called	the	fourth	industrial	revolution	(see	Figure	28-1).	

	

Figure	28-1:	The	Beginning	of	Industry	4.0	

209	 	 28	Industry	4.0	

 Industrial IT and Automation – Part 4: Internet of Things

The	first	Industrial	Revolution	used	water	and	steam	power	to	mechanize	production.	The	second	
used	electric	power	to	create	mass	production.	The	third	used	electronics	and	information	
technology	to	automate	production.	Now	a	fourth	Industrial	Revolution	is	building	on	the	third,	
the	digital	revolution	that	has	been	occurring	since	the	middle	of	the	last	century.	It	is	
characterized	by	a	fusion	of	technologies	that	is	blurring	the	lines	between	the	physical,	digital,	
and	biological	spheres.	

Reference:	

http://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-
how-to-respond	

Figure	28-2	shows	some	important	steps	in	the	Industrial	IT	and	Automation	evolution	and	the	
beginning	of	Industry	4.0.	

	

	

Figure	28-2:	Industry	4.0	–	The	Fourth	Industrial	Revolution?	

	

	

	

210	

29 Machine	Learning	
Web:	https://www.halvorsen.blog/documents/technology/machine_learning/	 	

Machine	Learning	is	all	about	Data	Analytics,	complex	Mathematical	Models	and	Algorithms,	used	
for	Predictive	Analytics.	Machine	learning	is	closely	related	to	(and	often	overlaps	with)	
computational	statistics,	which	also	focuses	on	prediction-making	through	the	use	of	computers.	It	
has	strong	ties	to	mathematical	optimization.	

• Machine	Learning	is	about	examine	large	amount	of	data	(“Big	Data”)	looking	for	Patterns.	 	
• It	applies	statistical	techniques	to	large	amounts	of	data,	looking	for	the	best	pattern	to	

solve	your	problem.	This	pattern	can	be	referred	to	as	a	data	model.	 	
• The	machine	learning	process	starts	with	raw	data	and	ends	up	with	a	model	derived	from	

that	data.	 	
• The	machine	learning	algorithm	is	run	on	prepared	data,	and	the	result	is	referred	to	as	a	

model.	 	
• The	knowledge	gained	is	then	used	for	Predictions,	i.e.,	Predict	the	Future	Machine	

Learning	is	an	iterative	process,	which	continuously	updates	the	model	when	new	
data/knowledge	arrives.	

Machine	Learning	and	Artificial	Intelligence	(AI)	is	closely	related.	You	could	say	that	Machine	
Learning	is	a	tool	to	achieve	Artificial	Intelligence	(AI).	

Another	term	used	a	lot	lately	is	Deep	Learning,	which	is	also	closely	related	to	Machine	Learning	
and	Artificial	Intelligence.	You	could	say	Deep	Learning	is	a	technique	for	implementing	Machine	
Learning.	See	Nvidia	(2017)	for	more	details	about	these	differences.	

Figure	29-1	shows	a	simplified	sketch	of	the	Machine	Learning	process:	

	

Figure	29-1:	Machine	learning	

211	 	 29	Machine	Learning	

 Industrial IT and Automation – Part 4: Internet of Things

	

Machine	Learning	is	about	examine	large	amount	of	data	(“Big	Data”)	looking	for	Patterns.	

• It	applies	statistical	techniques	to	large	amounts	of	data,	looking	for	the	best	pattern	to	
solve	your	problem.	This	pattern	can	be	referred	to	as	a	data	model.	

• The	machine	learning	process	starts	with	raw	data	and	ends	up	with	a	model	derived	from	
that	data.	

• The	machine	learning	algorithm	is	run	on	prepared	data,	and	the	result	is	referred	to	as	a	
model.	

• The	knowledge	gained	is	then	used	for	Predictions,	i.e.,	Predict	the	Future	
• Machine	Learning	is	an	iterative	process,	which	continuously	updates	the	model	when	new	

data/knowledge	arrives.	

	

Machine	Learning	Applications	and	Examples:	

• Create	complex	Weather	models	from	a	large	amount	of	collected	weather	data.	The	
weather	models	are	then	used	to	predict	the	weather	in	the	future	(short	or	long	termed)	 	

• Transportation:	Self	driving	cars,	ships	or	so-called	Autonomous	vehicles	 	
• Marketing	and	sales,	e.g.,	Online	recommendation	offers	such	as	those	from	Amazon	and	

Netflix	 	
• Apple	Siri	(intelligent	personal	assistant)	and	similar	services	 	
• Financial	services,	such	as	Stock	market,	etc.	 	
• ...	hundreds	of	other	examples	

	

For	more	information	about	Machine	Learning:	

https://halvorsen.blog/documents/technology/machine_learning/	

29.1 Machine	Learning	in	Automation	Systems	
In	Automation	Systems,	more	traditional	and	well	known	“Machine	Learning”	principles	such	as	
System	Identification,	State	Estimation	with	Kalman	Filter	and	Model	Predictive	Control	(MPC)	are	
used.	Machine	Learning	is	all	about	Data	Analytics,	complex	Mathematical	Models	and	Algorithms	
used	for	Predictive	Analytics.	

Machine	learning	is	closely	related	to	(and	often	overlaps	with)	computational	statistics,	which	
also	focuses	on	prediction-making	through	the	use	of	computers.	It	has	strong	ties	to	
mathematical	optimization.	In	System	Identification,	State	Estimation	(Kalman	Filter)	and	Model	
Predictive	Control	(MPC)	all	these	things	apply.	

212	 	 29	Machine	Learning	

 Industrial IT and Automation – Part 4: Internet of Things

29.1.1 System	identification	

System	Identification	uses	statistical	methods	to	build	mathematical	models	of	dynamical	systems	
from	measured	data.	

We	have	2	main	categories	of	System	Identification:	

• Parameter	Estimation	based	on	that	we	have	developed	a	mathematical	model	using	the	
laws	of	physics	(Mechanistic	Models)	and	you	want	to	find	the	unknown	model	
parameters.	Here	we	will	use	least	squares	method	as	an	example.	The	unknown	
parameters	are	then	found	from	experimental	data.	

• Black-box	/	Subspace	methods:	System	Identification	based	on	that	you	do	not	have	a	
mathematical	model	available.	The	models	(Empirical	Models)	are	found	from	
experimental	data	only	using	advanced	algorithms.	

See	Figure	29-2.	

	

Figure	29-2:	System	Identification	

For	more	information,	see:	

https://www.halvorsen.blog/documents/automation/	 	

29.1.2 State	Estimation	

State	Estimation	uses	mathematical	models	in	order	to	estimate	the	internal	states	of	a	process	

The	Kalman	Filter	is	a	commonly	used	method	to	estimate	the	values	of	state	variables	of	a	
dynamic	system	that	is	excited	by	stochastic	(random)	disturbances	and	stochastic	(random)	
measurement	noise.	

213	 	 29	Machine	Learning	

 Industrial IT and Automation – Part 4: Internet of Things

LabVIEW	has	built-in	functionality	for	both	System	Identification	and	State	Estimation	

For	more	information,	see:	

https://www.halvorsen.blog/documents/automation/	 	

29.1.3 Model	Predictive	Control	(MPC)	

Model	predictive	control	(MPC)	is	an	advanced	method	of	process	control	that	has	been	in	use	in	
the	process	industries	since	the	1980s.	

Model	Predictive	Control	(MPC)	is	a	multivariable	control	algorithm.	

Model	predictive	controllers	rely	on	dynamic	models	of	the	process,	most	often	linear	empirical	
models	obtained	by	system	identification.	 	

MPC	is	based	on	iterative,	finite-horizon	optimization	of	a	plant	model.	

This	is	achieved	by	optimizing	a	finite	time-horizon,	but	only	implementing	the	current	timeslot.	
MPC	has	the	ability	to	anticipate	future	events	and	can	take	control	actions	accordingly.	

More	information	about	MPC:	

https://www.halvorsen.blog/documents/automation/mpc/	 	

	

	

	

	 	

	

214	

Part	5 :	Applications	and	
Examples	

In	this	part,	we	will	go	through	some	examples	where	many	of	the	topics	in	this	document	has	
been	used.	

	

	

	

215	

30 Weather	Station	
At	the	university,	we	have	established	a	Weather	System	for	presenting	the	weather	at	the	
university.	

	

Figure	30-1:	Weather	Station	Overview	

The	system	is	showing	the	weather	data	from	the	weather	station	located	at	the	university.	The	
system	shall	be	used	to	create	weather	models	and	forecasting.	The	weather	system	has	a	
SDK/API	that	makes	it	possible	to	retrieve	data	in	different	manners,	including	Web	Services.	APIs	
have	also	been	created	for	the	following	languages:	C#,	LabVIEW,	MATLAB	and	Python.	An	OPC	
API	is	also	available	in	these	4	languages.	These	APIs	make	it	possible	to	retrieve	data	from	the	
system	and	create	your	own	weather	models	used	in	forecasting	and	weather	prediction.	

In	the	future,	the	weather	system	will	be	extended	with	more	features,	including	more	advanced	
weather	prediction	and	forecasts,	but	also	native	Apps	for	iOS,	Android	and	Windows	8	will	be	
developed.	

A	Web	site	is	part	of	the	solution	(Figure	30-2).	

216	 	 30	Weather	Station	 	

 Industrial IT and Automation - Part 5:	Applications

	

Figure	30-2:	Weather	Station	Web	Site	

The	system	consists	of	the	following	modules:	

	

217	 	 30	Weather	Station	 	

 Industrial IT and Automation - Part 5:	Applications

30.1 Database	
In	Figure	30-3	we	see	the	ER	diagram	of	the	database	used	in	the	Weather	System.	

	

Figure	30-3:	Database	Diagram	

A	short	description	of	the	different	tables:	

218	 	 30	Weather	Station	 	

 Industrial IT and Automation - Part 5:	Applications

	

30.2 OPC	Server	
The	KEPware	OPC	server	is	used.	You	need	to	use	a	Tunneller	software	in	order	to	connect	to	the	
OPC	Server.	

There	exists	OPC	APIs	for	the	following	languages:	

• C#	
• LabVIEW	
• MATLAB	
• Python	 	

30.3 Web	Service	
A	Web	Service	has	been	made	in	order	to	get	data	from	the	system	(Figure	30-4).	

Web	Service:	http://128.39.35.252/WebApi/WebService.asmx	 	

219	 	 30	Weather	Station	 	

 Industrial IT and Automation - Part 5:	Applications

Below	we	see	the	available	web	service	methods:	

	

Figure	30-4:	Weather	Station	Web	Service	

30.4 iPad	App	
Below	we	see	the	iPad	App	that	has	been	made	for	the	Weather	Station.	

	

Figure	30-5:	Weather	Station	iPad	App	

220	 	 30	Weather	Station	 	

 Industrial IT and Automation - Part 5:	Applications

30.5 Windows	10	Universal	App	
In	Figure	30-6	we	see	the	Windows	10	Universal	App	that	has	been	made.	

	

Figure	30-6:	Weather	Station	Windows	10	Universal	App	

You	can	download	the	App	from	Windows	Store	for	free.	

	

221	

31 DeltaV	Training	and	
Research	Center	

DeltaV	is	a	Process	Control	System	from	Emerson,	see	Figure	31-1.	

	

Figure	31-1:	DeltaV	Hardware	Overview	

Figure	31-2	shows	the	DeltaV	Training	and	Research	Center	Web	Portal	that	has	been	made.	

222	 	 31	DeltaV	Training	and	Research	Center	

 Industrial IT and Automation - Part 5:	Applications

	

Figure	31-2:	DeltaV	Training	and	Research	Center	Web	Portal	

You	can	access	the	Web	Portal	here:	http://128.39.35.248/DeltaV	

31.1 Training	Center	
An	important	part	of	the	system	is	a	Training	Station	(Figure	31-3)	where	students	and	staff	(or	
others)	can	learn	to	use	the	DeltaV	platform.	

223	 	 31	DeltaV	Training	and	Research	Center	

 Industrial IT and Automation - Part 5:	Applications

	

Figure	31-3:	DeltaV	Training	Station	

31.2 Research	Center	
The	DeltaV	Center	has	also	several	DeltaV	facilities	used	in	research.	

	

224	 	 31	DeltaV	Training	and	Research	Center	

 Industrial IT and Automation - Part 5:	Applications

	

All	the	work	at	the	research	facility	are	documented	in	the	DeltaV	Research	Center	Web	Portal.

	

225	

32 Data	Management	and	
Monitoring	Platform	

Figure	32-1	shows	an	overview	of	the	Data	Management	and	Monitoring	Platform	(DMM)	that	has	
been	developed.	

	

Figure	32-1:	Overview	of	the	Data	Management	and	Monitoring	Platform	(DMM)	

Database:	

An	important	part	of	the	DMM	platform	is	the	Database	where	all	the	configuration	data,	sensor	
data,	etc.	are	stored	(Figure	32-2).	

226	 	 32	Data	Management	and	Monitoring	Platform	 	

 Industrial IT and Automation - Part 5:	Applications

	

Figure	32-2:	DMM	Database	

Management:	

Here	we	can	configure	Devices	and	Tags	(Figure	32-3,	Figure	32-4)	

	

Figure	32-3:	DMM	Platform	-	Management	

227	 	 32	Data	Management	and	Monitoring	Platform	 	

 Industrial IT and Automation - Part 5:	Applications

	

Figure	32-4:	DMM	Management	–	Tag	Configuration	

Monitoring:	

Here	(Figure	32-5)	we	can	see	the	logged	data	with	charting	possibilities,	etc.	

	

Figure	32-5:	DMM	Platform	-	Monitoring	

With	the	DMM	platform	you	can	manage	and	monitor	data	in	Control	System,	a	SCADA	System,	a	
Home	Automation	solution,	etc.	

	

	

228	

References	
• Halvorsen,	Hans-Petter	(2017).	Blog:	The	Technical	Guy.	Available:	

https://www.halvorsen.blog	 	

• Halvorsen,	Hans-Petter	(2017).	Software	Development	-	A	Practical	Approach!	ISBN:	978-
82-691106-0-9.	Available:	https://www.halvorsen.blog	 	

• Halvorsen,	Hans-Petter	(2017).	Structured	Query	Language.	Available:	
https://www.halvorsen.blog	 	

• Nvidia	(2017).	What’s	the	Difference	Between	Artificial	Intelligence,	Machine	Learning,	and	
Deep	Learning?	Available:	https://blogs.nvidia.com/blog/2016/07/29/whats-difference-
artificial-intelligence-machine-learning-deep-learning-ai/	 	 	 	

• Wikipedia	(2017).	ASP.NET.	Available:	http://en.wikipedia.org/wiki/ASP.NET	

• Wikipedia	(2017).	Deep	Learning.	Available:	https://en.wikipedia.org/wiki/Deep_learning	 	 	

• Wikipedia	(2017).	Industry	4.0.	Available:	https://en.m.wikipedia.org/wiki/Industry_4.0	

• Wikipedia	(2017).	Scrum	Development.	Available:	
http://en.wikipedia.org/wiki/Scrum_(development)	 	

	

	

	

Hans-Petter	Halvorsen	
	

E-Mail:	hans.p.halvorsen@usn.no	 	 	 	

Web:	https://www.halvorsen.blog	 	 	

	

	

	

https://www.halvorsen.blog	

	

	

Industrial	IT	and	Automation	
A	Practical	Approach!	

	

Hans-Petter	Halvorsen	

Copyright	©	2017	

	

ISBN:	978-82-691106-1-6	

	

Publisher Identifier: 978-82-691106	

https://halvorsen.blog	

